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Introduction

Welcome to the third edition of Cambridge International AS & A Level Physics.  
This textbook has been revised to comprehensively cover the Cambridge International  
AS & A Level Physics syllabus (9702) for first examination in 2022.

This textbook is part of a suite of resources, which includes a Practical Skills Workbook, 
Teacher’s Resources and a Study and Revision Guide.

How to use this book
This textbook, endorsed by Cambridge Assessment International Education, has been 
designed to make your study of Physics as successful and rewarding as possible.

Organisation
The book is divided into two parts. Topics 1–11 cover the Cambridge International  
AS Level Physics syllabus content and Topics 12–25 cover the extra content required 
by students studying the full Cambridge International A Level Physics course. The 
titles of the topics in this book exactly match those in the syllabus. In almost all cases, 
the subheadings within the topics also match those used in the syllabus. Topic 26 is a 
standalone chapter and provides information about practical work.

Numerical answers to questions are included at the back of the book.

Features to help you learn
Each topic contains a number of features designed to help you effectively navigate the 
syllabus content.

At the start of each topic, there is a blue box that provides a summary of the syllabus 
points to be covered in that topic. These are the exact learning outcomes listed in the 
syllabus.

Learning outcomes
By the end of this topic, you will be able to:

1.1 Physical quantities
1  understand that all physical quantities 

consist of a numerical magnitude and a unit
2  make reasonable estimates of physical 

quantities included within the syllabus

1.2 SI units
1  recall the following SI base quantities and 

their units: mass (kg), length (m), time (s), 
current (A), temperature (K)

2  express derived units as products or 
quotients of the SI base units and use the 
derived units for quantities listed in this 
syllabus as appropriate

3  use SI base units to check the homogeneity of 
physical equations

4  recall and use the following prefixes and their 
symbols to indicate decimal submultiples or 
multiples of both base and derived units:  

pico (p), nano (n), micro (μ), milli (m), centi (c), 
deci (d), kilo (k), mega (M), giga (G), tera (T)

1.3 Errors and uncertainties
1  understand and explain the effects of 

systematic errors (including zero errors) and 
random errors in measurements

2  understand the distinction between precision 
and accuracy

3  assess the uncertainty in a derived quantity 
by simple addition of absolute or percentage 
uncertainties

1.4 Scalars and vectors
1  understand the difference between scalar 

and vector quantities and give examples of 
scalar and vector quantities included in the 
syllabus

2 add and subtract coplanar vectors
3  represent a vector as two perpendicular 

components
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useful to remind yourself of before you begin to read.

Starting points
★ Accurate measurement is very important in the development of physics.
★ Physicists begin by observing, measuring and collecting data.
★ The data items are analysed to discover whether they fit into a pattern.
★ If there is a pattern and this pattern can be used to explain other events, it 

becomes a theory.
★ The process is known as the scientific method (see Figure 1.1).

Key points and definitions are highlighted in blue panels throughout the book so that 
they can be easily identified and referred back to.

Every object continues in its state of rest, or with uniform velocity, unless acted on 
by a resultant force.

There are also a number of boxes labelled Maths Note to guide you through some of the 
mathematical skills required.

MATHS NOTE

There are actually two solutions to the defining equation of simple harmonic motion, 
a = −ω 2x, depending on whether the timing of the oscillation starts when the 
particle has zero displacement or is at its maximum displacement. If at time t = 0 
the particle is at its maximum displacement, x = x0, the solution is x = x0 cos ω t (not 
shown in Figure 17.5). The two solutions are identical apart from the fact that they 
are out of phase with each other by one quarter of a cycle or π/2 radians.

The variation of velocity with time is sinusoidal if the cosinusoidal displacement 
solution is taken:

v = − v0 sin ω t when x = x0 cos ω t

Each topic features a number of Worked Examples, which show you how to answer the 
kinds of questions you may be asked about the content contained within that topic.

WORKED EXAMPLE 1A

Calculate the number of micrograms in 1.0 milligram.

Answer

1.0 g = 1.0 × 103 mg

and 1.0 g = 1.0 × 106 micrograms (μg)

so, 1.0 × 103 mg = 1.0 × 106 μg

and 1.0 mg = (1.0 × 106)/(1.0 × 103) = 1.0 × 103 μg
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Practice questions are included to give you opportunities to test your understanding of 
the topic and to use the skills and techniques demonstrated in the Worked Examples.

Questions Use the information in Tables 1.1 and 1.6 to determine the base units of the following 
quantities.

8 density = mass/volume

9 pressure = force/area

SUMMARY

» When a force moves its point of application in the 
direction of the force, work is done.

» Work done = Fx cos θ, where θ is the angle between 
the direction of the force F and the displacement x.

» Energy is needed to do work; energy is the ability 
to do work.

» Energy cannot be created or destroyed. It can only 
be converted from one form to another.

» Efficiency = useful energy output/total energy input
» Power is defined as the rate of doing work or work 

done per unit time:
 power = work done/time taken, P = W/t.
» The unit of power is the watt (W).
 1 watt = 1 joule per second

» Power = force × velocity
» Potential energy is the energy stored in an object 

due to its position or shape; examples are elastic 
potential energy and gravitational potential energy.

» When an object of mass m moves vertically through 
a distance ∆h in a uniform gravitational field, then 
the change in gravitational potential energy is given 
by: ∆Ep = mg∆h where g is the acceleration of free 
fall.

» Kinetic energy is the energy stored in an object 
due to its motion.

» For an object of mass m moving with speed v, the 
 kinetic energy is given by: Ek = 12mv2.

At the end of each topic, there is a Summary of the key points that have been covered.
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EXTENSION

In astronomy, the wavelength tends to be measured rather than the frequency. If the 
measured wavelength of the emitted light (see Topic 25) is less than that measured 
for a stationary source, then the distance between the source (star) and detector is 
decreasing (blue shift). If the measured wavelength is greater than the value of a 
stationary source, then the source is moving away from the detector (red shift).  
The blue and red shifts are referred to in this way as red has the longest wavelength 
in the visible spectrum and blue the shortest.

Material that goes beyond the requirements of the Cambridge International AS & A Level 
Physics syllabus, but which may be of interest, especially to those of you planning to  
study Physics at a higher level, is clearly labelled in Extension boxes.
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Assessment
If you are following the Cambridge International AS Level Physics course, you will take 
three examination papers:

» Paper 1 Multiple-choice (1 hour 15 minutes)
» Paper 2 AS Level Structured Questions (1 hour 15 minutes)
» Paper 3 Advanced Practical Skills (2 hours)

If you are studying the Cambridge International A Level Physics course, you will take 
five examination papers: Papers 1, 2 and 3 and also:

» Paper 4 A Level Structured Questions (2 hours)
» Paper 5 Planning, Analysis and Evaluation (1 hour 15 minutes)

Command words
The table below, taken from the syllabus, includes command words used in the 
assessment for this syllabus. The use of the command word will relate to the subject 
context. Make sure you are familiar with these.

command word what it means
calculate work out from given facts, figures or information
comment give an informed opinion
compare identify/comment on similarities and/or differences
define give precise meaning
determine establish an answer using the information available
explain set out purposes or reasons/make the relationships between things 

evident/provide why and/or how and support with relevant evidence
give produce an answer from a given source or recall/memory
identify name/select/recognise
justify support a case with evidence/argument
predict suggest what may happen based on available information
show (that) provide structured evidence that leads to a given result
sketch make a simple freehand drawing showing the key features
state express in clear terms
suggest apply knowledge and understanding to situations where there are a 

range of valid responses in order to make proposals

Finally, each topic ends with a set of End of topic questions, some are exam-style questions 
written by the authors, others are taken from Cambridge International AS & A Level 
Physics (9702) past examination papers.

END OF TOPIC QUESTIONS

1 State how the centripetal force is provided in the following examples:
a a planet orbiting the Sun,
b a child on a playground roundabout,
c a train on a curved track,
d a passenger in a car going round a corner.

2 NASA’s 20-G centrifuge is used for testing space equipment and the effect of 
acceleration on humans. The centrifuge consists of an arm of length 17.8 m, 
rotating at constant speed and producing an acceleration equal to 20 times the 
acceleration of free fall. Calculate:
a the angular speed required to produce a centripetal acceleration of 20g,
b the rate of rotation of the arm (g = 9.81 m s–2).
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Notes for teachers
Key concepts
These are the essential ideas that help learners to develop a deep understanding of the 
subject and to make links between the different topics. Although teachers are likely to 
have these in mind at all times when they are teaching the syllabus, the following icons 
are included in the textbook at points where the key concepts particularly relate to the 
text:

Models of physical systems
Physics is the science that seeks to understand the behaviour of the Universe.  
The development of models of physical systems is central to physics. Models simplify, 
explain and predict how physical systems behave.

Testing predictions against evidence
Physical models are usually based on prior observations, and their predictions are tested 
to check that they are consistent with the behaviour of the real world. This testing 
requires evidence, often obtained from experiments.

Mathematics as a language and problem-solving tool
Mathematics is integral to physics, as it is the language that is used to express physical 
principles and models. It is also a tool to analyse theoretical models, solve quantitative 
problems and produce predictions.

Matter, energy and waves
Everything in the Universe comprises matter and/or energy. Waves are a key mechanism 
for the transfer of energy and are essential to many modern applications of physics.

Forces and fields
The way that matter and energy interact is through forces and fields. The behaviour of 
the Universe is governed by fundamental forces with different magnitudes that interact 
over different distances. Physics involves study of these interactions across distances 
ranging from the very small (quantum and particle physics) to the very large (astronomy 
and cosmology).

The information in this introduction and the learning outcomes throughout the book 
are taken from the Cambridge International syllabus for examination from 2022. You 
should always refer to the appropriate syllabus document for the year of your students’ 
examination to confirm the details and for more information. The syllabus document is 
available on the Cambridge International website at www.cambridgeinternational.org.
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Additional support
A number of other Hodder Education resources are available to help teachers deliver the 
Cambridge International AS & A Level Physics syllabus.

» The Cambridge International AS & A Level Physics Practical Skills Workbook is a  
write-in resource designed to be used throughout the course and provides students 
with extra opportunities to test their understanding of the practical skills required  
by the syllabus.

» The Cambridge International AS & A Level Physics Teacher’s Resources include an 
introduction to teaching the course, a scheme of work and additional teaching 
resources.

» The Cambridge International AS & A Level Physics Study and Revision Guide is a  
stand-alone resource that is designed to be used independently by students at the 
end of their course of study as they prepare for their examinations. This title has not 
been through the Cambridge International endorsement process.
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1

1 Physical quantities and units
AS LEVEL

	 1 Physical	quantities	and	units

Learning outcomes
By the end of this topic, you will be able to:

1.1 Physical quantities
1  understand that all physical quantities 

consist of a numerical magnitude and a unit
2  make reasonable estimates of physical 

quantities included within the syllabus

1.2 SI units
1  recall the following SI base quantities and 

their units: mass (kg), length (m), time (s), 
current (A), temperature (K)

2  express derived units as products or 
quotients of the SI base units and use the 
derived units for quantities listed in this 
syllabus as appropriate

3  use SI base units to check the homogeneity of 
physical equations

4  recall and use the following prefixes and their 
symbols to indicate decimal submultiples or 
multiples of both base and derived units:  

pico (p), nano (n), micro (μ), milli (m), centi (c), 
deci (d), kilo (k), mega (M), giga (G), tera (T)

1.3 Errors and uncertainties
1  understand and explain the effects of 

systematic errors (including zero errors) and 
random errors in measurements

2  understand the distinction between precision 
and accuracy

3  assess the uncertainty in a derived quantity 
by simple addition of absolute or percentage 
uncertainties

1.4 Scalars and vectors
1  understand the difference between scalar 

and vector quantities and give examples of 
scalar and vector quantities included in the 
syllabus

2 add and subtract coplanar vectors
3  represent a vector as two perpendicular 

components

Starting points
★ Accurate measurement is very important in the development of physics.
★ Physicists begin by observing, measuring and collecting data.
★ The data items are analysed to discover whether they fit into a pattern.
★ If there is a pattern and this pattern can be used to explain other events, it 

becomes a theory.
★ The process is known as the scientific method (see Figure 1.1).

RECORD

ACCEPT

REJECT

OBSERVE and MEASURE

DEVELOP THEORY

TESTMODIFY THEORY

▲ Figure 1.1 Block diagram to illustrate the scientific method
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1

SI is founded upon seven fundamental or base units. The base units each have a 
unique definition agreed at world conventions.

1.1 Physical quantities

▲	 Figure 1.2 Tycho Brahe	(1546–1601)	measured	the	elevations	of	stars;	these	days	a	
modern	theodolite	is	used	for	measuring	angular	elevation.

A physical quantity is a feature of something which can be measured, for example, 
length, mass or the time interval for a particular event. Every physical quantity has a 
numerical value and a unit; for example, the length of this page is 27.5 cm, the mass of 
an apple is 450 g, the time to run 100 m is 12 s. If someone says they are able to run a 
distance of 1500 in 200 s, they could be very fast or very slow depending on whether the 
measurement of distance is in metres or centimetres! Take care – it is vital to give the 
unit of measurement whenever a quantity is measured or written down.

Large and small quantities are usually expressed in scientific notation, i.e. as a simple 
number multiplied by a power of ten. For example, 0.00034 would be written as  
3.4 × 10−4 and 152000000 as 1.52 × 108. There is far less chance of making a mistake 
with the number of zeros.

1.2 SI quantities and base units
In very much the same way that languages have developed in various parts of the 
world, many different systems of measurement have evolved. Just as languages can be 
translated from one to another, units of measurement can also be converted between 
systems. Although some conversion factors are easy to remember, some are very 
difficult. It is much better to have just one system of units. For this reason, scientists 
around the world use the Système Internationale (SI), which is based on the metric 
system of measurement.

If a quantity is to be measured accurately, the unit in which it is measured must be 
defined as precisely as possible.

▲	 Figure 1.3	The	mass	
of	this	jewel	could	be	
measured	in	kilograms,	
pounds,	carats,	
grains,	etc.

The base quantities and the units with which they are measured are listed in Table 1.1. 
For completeness, the candela has been included, but this unit will not be used in the 
Cambridge International AS & A Level Physics course. The mole will only be used in the 
Cambridge International A Level Physics course.
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1.2 SI quantities and base units

1

base quantity base unit symbol
mass kilogram kg
length metre m
time second s
electric current ampere (amp) A
temperature kelvin K
amount of 
substance

mole mol

luminous 
intensity 

candela cd

▲ Table 1.1 The base quantities and units

quantity length/m

from Earth to edge of observable 
Universe

4 × 1026

diameter of a galaxy 1 × 1021

from Earth to the Sun 2 × 1011

radius of the Earth 6 × 106

from London to Paris 3 × 105

length of a car 2

diameter of a hair 5 × 10−4

wavelength of light 5 × 10−7

diameter of an atom 3 × 10−10

diameter of a nucleus 6 × 10−15

▲ Table 1.2 Some values of length given to one 
significant figure

Tables 1.2, 1.3 and 1.4 give some examples of length, mass and time intervals which 
may be met in the Cambridge International AS & A Level Physics course.

object mass/kg

Sun 2 × 1030

Earth 6 × 1024

Moon 7 × 1022

container ship 5 × 108

elephant 6 × 103

car 2 × 103

football 4 × 10−1

grain of sand 4 × 10−10

hydrogen atom 2 × 10−27

electron 9 × 10−31

electron neutrino 4 × 10−36

▲ Table 1.3 Some values of mass 
given to one significant figure

time interval time interval/s

age of the universe 5 × 1017

human life expectancy 2 × 109

time for the Earth to orbit the Sun 3 × 107

orbit period of the Moon 2 × 106

time to run a marathon (42 km) 9 × 103

time between human heartbeats 1

period of a musical note (middle C) 4 × 10−3

time for light to travel 1 m 3 × 10−9

lifetime of a bottom quark 1 × 10−12

mean lifetime of a Higgs boson 2 × 10−24

▲ Table 1.4 Some values of time intervals given to one 
significant figure

MATHS NOTE

Significant figures
» All non-zero digits are considered significant.  

For example, 25 has two significant figures (2 and 5), 
 while 123.45 has five significant figures (1, 2, 3, 4 and 5).
» Zeros appearing anywhere between two non-zero 

digits are significant: 20.052 has five significant 
figures: 2, 0, 0, 5, 2.

» Zeros to the left of the significant figures are not 
significant. For example, 0.00034 has two significant 
figures: 3 and 4.

For example,
» 6 is quoted to 1 significant figure
» 63 is quoted to 2 significant figures

» 634 is quoted to 3 significant figures
» 6.345 is quoted to 4 significant figures.

A problem arises when there are zeros at the end of the 
number. If the number is 600, then has this number 
been quoted to one, two, or three significant figures? 
This problem is overcome by using scientific notation.

For example,
» 6 × 102 is quoted to 1 significant figure
» 6.0 × 102 is quoted to 2 significant figures
» 6.00 × 102 is quoted to 3 significant figures.

Where a number of zeros are given before a number 
they do not count as significant figures. The number 
0.00063 has two significant figures.
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Each quantity has just one unit and this unit can have multiples and sub-multiples 
to cater for larger or smaller values. The unit is given a prefix to denote the multiple 
or sub-multiple (see Table 1.5). For example, one thousandth of a metre is known as a 
millimetre (mm) and 1.0 millimetre equals 1.0 × 10−3 metres (m).

prefix symbol multiplying factor

tera T 1012

giga G 109

mega M 106

kilo k 103

deci d 10−1

centi c 10−2

milli m 10−3

micro μ 10−6

nano n 10−9

pico p 10−12

▲ Table 1.5 The more commonly used prefixes
Beware when converting units for lengths, areas and volumes!

1 mm = 10−3 m
Squaring both sides 1 mm2 = (10−3)2 m2 = 10–6 m2

and 1 mm3 = (10−3)3 m3 = 10−9 m3

Note also that 1 cm = 10−2 m
1 cm2 = (10−2)2 m2 = 10−4 m2

and 1 cm3 = (10–2)3 m3 = 10−6 m3

The box in Figure 1.4 has a volume of 1.0 × 103 cm3 or 1.0 × 106 mm3 or 1.0 × 10−3 m3.

A distance of 30 metres should be written as 30 m and not 30 ms or 30 m s. The letter s is 
never included in a unit for the plural. If a space is left between two letters, the letters denote 
different units. So, 30 m s means 30 metre seconds and 30 ms means 30 milliseconds.

10 cm

20 cm

5 cm

▲ Figure 1.4 This box has a 
volume of 1.0 × 103 cm3.

WORKED EXAMPLE 1A

Calculate the number of micrograms in 1.0 milligram.

Answer
1.0 g = 1.0 × 103 mg

and 1.0 g = 1.0 × 106 micrograms (μg)

so, 1.0 × 103 mg = 1.0 × 106 μg

and 1.0 mg = (1.0 × 106 )/(1.0 × 103) = 1.0 × 103 μg

1 Calculate the area, in cm2, of the top of a table with sides of 
1.2 m and 0.9 m.

2 Determine the number of cubic metres in one cubic kilometre.

3 Calculate the volume in m3 of a wire of length 75 cm and 
diameter 0.38 mm.

4 Write down, using scientific notation, the values of the 
following quantities:

a 6.8 pF   b 32 μC   c 60 GW

5 How many electric fires, each rated at 2.5 kW, can be powered 
from a generator providing 2.0 MW of electric power?

6 An atom of gold, Figure 1.5, has a diameter of 0.26 nm and the diameter of its nucleus is 
5.6 × 10−3 pm. Calculate the ratio of the diameter of the atom to that of the nucleus.

Questions

0.26 nm

nucleus

5.6 ×10–3 pm

▲ Figure 1.5 Atom of gold
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1.2 SI quantities and base units

1
Order of magnitude of quantities
It is often useful to be able to estimate the size, or order of magnitude, of a quantity. 
Strictly speaking, the order of magnitude is the power of ten to which the number 
is raised. The ability to estimate is particularly important in a subject like physics 
where quantities have such widely different values. A short distance for an astrophysicist 
is a light-year (about 9.5 × 1015 m) whereas a long distance for a nuclear physicist is  
6 × 10−15 m (the approximate diameter of a nucleus)!

The ability to estimate orders of magnitude is valuable when planning and carrying 
out experiments or when suggesting theories. Having an idea of the expected result 
provides a useful check that an error has not been made. This is also true when 
using a calculator. For example, the acceleration of free fall at the Earth’s surface is 
about 10 m s−2. If a value of 9800 m s−2 is calculated, then this is obviously wrong and 
a simple error in the power of ten is likely to be the cause. Similarly, a calculation in 
which the journey time for a car travelling 400 km at 20 m s−1 is found to be several 
seconds instead of several hours may indicate that the distance has been assumed to 
be in metres rather than in kilometres.

▲ Figure 1.6 The ratio of the mass of the humpback whale to the mass of the mouse is about 
104, or 4 orders of magnitude. That is minute compared to the ratio of the mass of the Sun 
to the mass of an electron (1061 or 61 orders of magnitude)!

The approximate values of common objects or physical quantities should be known. 
For example, a carton of orange juice has a volume of 1000 cm3 (1 litre), the mass of 
a large car is about 2 × 103 kg and an adult about 1 × 102 kg. You could use the more 
familiar values for the masses of a car and an adult to make a reasonable estimate of the 
mass of an elephant or a jumbo jet – see Figure 1.7.

▲ Figure 1.7 The elephant has a mass that is large in comparison with the boy but small 
compared with the jumbo jet.
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7 Estimate to 1 significant figure the following quantities:

a the mass of an orange in g

b the mass of an adult human in kg

c the height of a room in a house in m

d  the diameter of a pencil in cm

e the thickness of this page in mm

f the volume of a grain of rice in m3

g the volume of a human head in m3 

h the maximum speed of a human in m s−1

i the speed of a jumbo jet in m s−1

j the kinetic energy of a ocean liner at cruising speed in GJ

k the change in gravitational potential energy of a child climbing two flights of 
stairs in a house in kJ.

Derived units
All quantities, apart from the base quantities, can be expressed in terms of derived units.

See Table 1.6 for examples of derived units. Some quantities have a named unit. 
For example, the unit of force is the newton, symbol N, but the newton can be 
expressed in terms of base units. Quantities which do not have a named unit are 
expressed in terms of other units. For example, moment of a force is measured in 
newton metre (N m) or kg m2 s−2.

quantity unit derived unit

frequency hertz (Hz) s−1

velocity m s−1 m s−1

acceleration m s−2 m s−2

force newton (N) kg m s−2

momentum newton second (N s) kg m s−1

energy joule (J) kg m2 s−2

power watt (W) kg m2 s−3

electric charge coulomb (C) A s

potential difference volt (V) kg m2 s−3 A−1

electrical resistance ohm (Ω) kg m2 s−3 A−2

▲ Table 1.6 Some examples of derived units

Question

Derived units consist of some combination of the base units. The base units may 
be multiplied together or divided by one another, but never added or subtracted.

WORKED EXAMPLE 1B

Estimate to 1 significant figure:
a the mass of jar of peanut butter in g
b the volume of an orange in cm3.

Answers
a 5 × 102 g
b 3 × 102 cm3
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1.2 SI quantities and base units

1

Use the information in Tables 1.1 and 1.6 to determine the base units of the following 
quantities.

8 density = mass/volume

9 pressure = force/area

Checking equations
It is possible to work out the total number of oranges in two bags if one bag contains four 
and the other five (the answer is nine!). This exercise would, of course, be nonsense if 
one bag contained three oranges and the other four mangoes. In the same way, for any 
equation to make sense, each term involved in the equation must have the same base 
units. A term in an equation is a group of numbers and symbols, and each of these terms 
(or groups) is added to, or subtracted from, other terms. For example, in the equation

v = u + at

the terms are v, u and at.

In the example above, each term has the base units m s−1. If the equation is not 
homogeneous, then it is incorrect and is not valid.

Note the checking an equation to see if it is balanced does not guarantee that the equation is 
correct. There may be missing or incorrect pure numbers or the equation may not be valid.

In any equation where each term has the same base units, the equation is said to 
be homogeneous or ‘balanced’.

WORKED EXAMPLE 1D

Use base units to show that the following equation is homogeneous.

work done = gain in kinetic energy + gain in gravitational potential energy

Answer
The terms in the equation are work, (gain in) kinetic energy and (gain in) 
gravitational potential energy. 

work done = force × distance moved in the direction of the force

and so the base units are kg m s−2 × m = kg m2 s−2.

kinetic energy = 1
2
 mass × (speed)2

Since any pure number such as 1
2
 has no unit, the base units are kg × (m s−1)2 = kg m2 s−2.

potential energy = mass × acceleration of free fall g × distance

The base units are kg × m s−2 × m = kg m2 s−2.

Conclusion: All terms have the same base units and the equation is homogeneous.

WORKED EXAMPLE 1C

What are the base units of speed?

Answer
Speed is defined as distance/time and so the unit is m/s.

Division by a unit is shown using a negative index that is s−1.

The base units of speed are m s−1.

Questions
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When an equation is known to be homogeneous, then the balancing of base units 
provides a means of finding the units of an unknown quantity.

WORKED EXAMPLE 1E

The drag force F acting on a sky diver is given by the equation

F = 1
2
CρAv2

where C is a constant, ρ is the density of air, A is the cross-sectional area of the diver 
and v is the speed of fall. Show that C has no base units.

Answer
The base units of force are kg m s−2.

The base units of ρAv2 are kg m−3 × m2 × (m s−1)2 = kg m s−2.

Conclusion: C does not have any base units.

10 Use base units to check whether the following equations are balanced:

a pressure = depth × density × acceleration of free fall

b energy = mass × (speed of light)2

11 The work done stretching a spring by extension x is given by the equation

 W = 1
2
 kx2

 where k is a constant. Determine the base units of k.

12 Use base units to check whether the following equations are balanced:

a power = potential difference × electric current,

b electrical energy = (electric current)2 × resistance × time

13 Show that the left-hand side of the equation

 pressure + 1
2
 × density × (speed)2 = constant

 is homogeneous and find the base units of the constant on the right-hand side.

Conventions for symbols and units
You may have noticed that when symbols and units are printed, they appear in different 
styles of type. The symbol for a physical quantity is printed in italic (sloping) type, 
whereas its unit is in roman (upright) type. For example, velocity v is italic, but its unit 
m s−1 is roman. Of course, you will not be able to make this distinction in handwriting.

At Cambridge International AS & A Level and beyond, there is a special convention for 
labelling columns of data in tables and graph axes. The symbol is printed first (in italic), 
separated by a forward slash (the printing term is a solidus) from the unit (in roman). 
Then the data is presented in a column, or along an axis, as pure numbers. This is 
illustrated in Figure 1.8, which shows a table of data and the resulting graph for the 
velocity v of a particle at various times t.

0
0

1.0 2.0

2.0

4.00

1.0

t/s 6.0

t/s

v
/m

 s–1v/m s–1

2.0 5.5

4.0

2.5

▲ Figure 1.8 The convention for labelling tables and graphs

Questions
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1.3 Errors and uncertainties

1
If you remember that a physical quantity contains a pure number and a unit, the reason 
for this style of presentation becomes clear. By dividing a physical quantity such as time 
(a number and a unit) by the appropriate unit, you are left with a pure number. It is then 
algebraically correct for the data in tables, and along graph axes, to appear as pure numbers.

You may also see examples in which the symbol for the physical quantity is followed by the 
slash, and then by a power of 10, and then the unit, for example, t/102 s. This means that the 
column of data has been divided by 100, to save repeating lots of zeros in the table. If you see 
a table or graph labelled t/102 s and the figures 1, 2, 3 in the table column or along the graph 
axis, this means that the experimental data was obtained at values of t of 100 s, 200 s, 300 s.

Try to get out of the habit of heading table columns and graphs in ways such as ‘t in s’, 
‘t(s)’ or even of recording each reading in the table as 1.0 s, 2.0 s, 3.0 s.

1.3 Errors and uncertainties
If we want to measure the diameter of a steel sphere or a marble, we could use a 
metre rule, or a vernier caliper, or a micrometer screw gauge. The choice of measuring 
instrument would depend on the number of significant figures appropriate or required 
for the length being measured. For example, the metre rule could be used to measure to 
the nearest millimetre, the vernier caliper to the nearest tenth of a millimetre, and the 
micrometer screw gauge to the nearest one-hundredth of a millimetre.

A B

D To the ratchet C

▲ Figure 1.9 A micrometer screw gauge. The object to be measured is placed between A and 
B. B is screwed down on to the object, using the ratchet C, until the ratchet slips.

50

35
40

30

▲ Figure 1.10 This screw 
gauge shows a reading 
of 9.5 mm on the 
divisions on the barrel 
plus 0.36 mm on the 
divisions on the thimble, 
9.86 mm in total. You 
can easily read to the 
nearest division on the 
thimble; that is, to the 
nearest 0.01 mm.

WORKED EXAMPLE 1F

1 Figure 1.11a shows the scale of a micrometer screw gauge when the two faces are 
moved to make contact with each other (this checks the so-called uncertainty in 
the zero reading), and Figure 1.11b shows the scale when the gauge is tightened 
on an object.

 What is the length of the object?
2 Figure 1.12 shows the scale of a vernier caliper. What is the reading?

0

10
15

5

a) b)

1510

10
15

5

50

▲ Figure 1.11 a) and b)

5 6 7 cm

50

▲ Figure 1.12
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14 Figures 1.13a and 1.13b show the scales of a micrometer screw gauge when the zero 
is being checked, and again when measuring the diameter of an object. What is the 
diameter?

b)a)

45
0

a)
10

0
5

0

45

b)

▲ Figure 1.13

Absolute and percentage uncertainty
We could show the readings for the diameter of a steel sphere measured with a metre 
rule, or a vernier caliper, or a micrometer screw gauge as follows:

metre rule: 12 ± 1 mm

vernier caliper: 12.3 ± 0.1 mm

micrometer screw gauge: 12.34 ± 0.01 mm

In the list above, each of the measurements is shown with its uncertainty. 
For example, using the metre rule, the measurement of the diameter is 12 mm with an 
uncertainty of 1 mm.

The uncertainty in the measurement decreases as we move from the metre rule to the 
vernier caliper and finally to the micrometer screw gauge.

As we shall see in the section on accuracy and precision, in reality, uncertainty is not the 
only factor affecting the accuracy of the measurement.

The total range of values within which the measurement is likely to lie is known 
as its uncertainty.

For example, a measurement of 46.0 ± 0.5 cm implies that the most likely value 
is 46.0 cm, but it could be as low as 45.5 cm or as high as 46.5 cm. The absolute 
uncertainty in the measurement is ±0.5 cm. The percentage uncertainty in the 
measurement is ±(0.5/46) × 100% = ±1%.

It is important to understand that, when writing down measurements, the number 
of significant figures of the measurement indicates its uncertainty. Some examples of 
uncertainty are given in Table 1.7.

instrument uncertainty typical reading

top-pan balance ±0.01 g 17.35 g

stop-watch with 0.1 s divisions ±0.1 s 16.2 s

thermometer with 1 deg C intervals ±0.5°C 22.5°C

ammeter with 0.1 A divisions ±0.1 A 2.1 A

▲ Table 1.7 Examples of uncertainty

Answers
1 From Figure 1.11a, the initial reading is +0.12 mm. The reading in Figure 1.11b 

is 15.62 mm.
 The length of the object is thus (15.62 – 0.12) mm = 15.50 mm.
2 The zero of the vernier scale is between the 5.5 cm and 5.6 cm divisions of the fixed 

scale. There is coincidence between the third graduation of the vernier scale and 
one of the graduations of the fixed scale. The reading is thus 5.53 cm or 55.3 mm.

Question
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1.3 Errors and uncertainties

1
The uncertainty in a measurement should be stated to one significant figure. The value 
for the quantity should be stated to the same number of decimal places as the uncertainty. 
For example, the reading for the time should not be stated as 16 s or 16.23 s where the 
uncertainty is ±0.1 s.

Remember that the uncertainty in a reading is not wholly confined to the reading of 
its scale or to the skill of the experimenter. Any measuring instrument has a built-in 
uncertainty. For example, a metal metre rule expands as its temperature rises. At only 
one temperature will readings of the scale be precise. At all other temperatures, there 
will be an uncertainty due to the expansion of the scale. Knowing by how much the rule 
expands would enable this uncertainty to be removed and hence improve precision.

Manufacturers of digital meters quote the uncertainty for each meter. For example, a digital 
voltmeter may be quoted as ±1% ±2 digits. The ±1% applies to the total reading shown 
on the scale and the ±2 digits is the uncertainty in the final display figure. This means 
that the uncertainty in a reading of 4.00 V would be (±4.00 × 1/100) ± 0.02 = ±0.06 V. 
This uncertainty would be added to any further uncertainty due to a fluctuating reading.

The uncertainty in a measurement is sometimes referred to as being its error. This is not 
strictly true. Error would imply that a mistake has been made. There is no mistake in 
taking the measurement, but there is always some doubt or some uncertainty as to its value.

Accuracy and precision

Accuracy refers to the closeness of a measured value to the ‘true’ or ‘known’ value.

Accuracy depends on the equipment used, the skill of the experimenter and the 
techniques used. Reducing systematic error or uncertainty (described further below) in a 
measurement improves its accuracy.

Precision refers to how close a set of measured values are to each other.

The precision of a set of measured values depends on the range of values. The smaller 
the range the better the precision.

Reducing the random error or uncertainty in a measurement improves its precision.

The experimenter may choose different measuring instruments and may use them with 
different levels of skill, thus affecting the precision of measurement.

When a measurement is repeated many times and the readings are all close together, 
as shown in Figure 1.14a, the measurement is precise. If there is a greater spread of 
readings, as shown in Figure 1.14b, the measurement is imprecise.

A set of measurements for a given quantity may be very precise but the measured value 
may not be accurate. Accuracy is concerned with how close the measured value is to 
the true value. For example, a micrometer screw gauge can be read to ±0.01 mm but, if 
there is a large zero error (described in the section on systematic errors below), then the 
readings from the scale for the diameter of a sphere or marble would not be accurate. 
The distinction between precision and accuracy is illustrated in Figure 1.15. On each of 
the graphs the value T is the true value of the quantity.

WORKED EXAMPLE 1G

A student takes a large number of imprecise readings for the current in a wire. He uses 
an ammeter with a zero error of −ΔI, meaning that all scale readings are too small 
by ΔI. The true value of the current is I. Sketch a distribution curve of the number of 
readings plotted against the measured value of the current. Label any relevant values.

Answer
This is the case illustrated in Figure 1.15b. The peak of the curve is centred on a 
value of I − ΔI.

T

a) precise but not accurate
reading
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b) imprecise and not accurate
reading
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▲ Figure 1.15
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▲ Figure 1.14
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15 A large number of precise readings for the diameter D of a wire are made using 

a micrometer screw gauge. The gauge has a zero error +E, which means that all 
readings are too large. Sketch a distribution curve of the number of readings plotted 
against the measured value of the diameter.

16 The manufacturer of a digital ammeter quotes its uncertainty as ±1.5% ± 2 digits.

a Determine the uncertainty in a constant reading of 2.64 A.

b The meter is used to measure the current from a d.c. power supply. The current 
is found to fluctuate randomly between 1.98 A and 2.04 A. Determine the most 
likely value of the current, with its uncertainty.

Choice of instruments
The choice of an instrument required for a particular measurement is related to the 
measurement being made. Obviously, if the diameter of a hair is being measured, a 
micrometer screw gauge is required, rather than a metre rule, as the metre rule can 
only read to the nearest 0.5 mm so the uncertainty of ±1 mm is much greater than the 
diameter of the hair. Similarly, a galvanometer should be used to measure currents of 
the order of a few milliamperes, rather than an ammeter. Choice is often fairly obvious 
where single measurements are being made, but care has to be taken where two readings 
are subtracted. Consider the following example.

The distance of a lens from a fixed point is measured using a metre rule. The distance is 
95.2 cm (see Figure 1.16). The lens is now moved closer to the fixed point and the new 
distance is 93.7 cm. How far has the lens moved? The answer is obvious:  
(95.2 − 93.7) = 1.5 cm. But what is the uncertainty in the measurement?

93.7 cm

95.2 cm

▲ Figure 1.16

The smallest division on the metre rule is 1 mm. If you are careful you should be able to 
estimate a reading to about 0.5 mm. If you are measuring the length of an object by taking 
a reading at each end, the uncertainties add to give a total uncertainty of ±1 mm (in this 
case 1

2
 mm at the zero end of the rule plus 1

2
 mm when finding the position of the centre 

of the lens). This means that each separate measurement of length has an uncertainty of 
about (1/940 × 100)%, i.e. about 0.1%. That appears to be good! However, the uncertainty 
in the distance moved is ±2 mm, because both distances have an uncertainty, and when 
finding the difference between these distances these uncertainties add up (see the section 
on Combining uncertainties), so the percentage uncertainty is ±(2/15 × 100)% = ±13%.
This uncertainty is, quite clearly, unacceptable. Another means by which the distance 
moved could be measured must be devised to reduce the uncertainty.

During your Cambridge International AS & A Level Physics course, you will meet with 
many different measuring instruments. You must learn to recognise which instrument 
is most appropriate for particular measurements. A stop-watch may be suitable for 
measuring the period of oscillation of a pendulum but you would have difficulty using 
it to find the time taken for a stone to fall vertically from rest through a distance of 1 m. 
Choice of appropriate instruments is likely to be examined when you are planning 
experiments.

Questions
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1.3 Errors and uncertainties

1

17 The diameter of a ball is measured using a metre rule and a set square, as illustrated 
in Figure 1.17. The readings on the rule are 16.8 cm and 20.4 cm. Each reading has 
an uncertainty of ±1 mm.

 Calculate, for the diameter of the ball:

a its actual uncertainty

b its percentage uncertainty.

 Suggest an alternative, but more precise, method by which the diameter could be 
measured.

 

ball

set-square set-square

reading reading

metre rule

    ▲ Figure 1.17

Systematic and random errors
Not only is the choice of instrument important so that any measurement is made with 
acceptable percentage uncertainty but, also, the techniques of measurement must optimise 
accuracy. That is, your experimental technique must reduce as far as possible any 
uncertainties in readings. These uncertainties may be due to either systematic or random errors.

Systematic error
A systematic error will result in all readings being either above or below the true value. 
The shift from the true value is by a fixed amount and is in the same direction each time 
the measurement is taken. The uncertainty in the reading cannot be eliminated by repeat 
readings and then averaging. Instead systematic error can be reduced only by improving 
experimental techniques. This error affects the accuracy of the measurement.

Question

WORKED EXAMPLE 1H

Suggest appropriate instruments for the measurement of the dimensions of a single 
page of this book.

Answer
The obvious instrument to measure the height and width of a page is a 30 cm ruler, 
which can be read to ±1 mm. The width, the smaller dimension, is about 210 mm, 
so the actual uncertainty is 210 mm ±1 mm and the percentage uncertainty is about 
±0.5%. It is not sensible to try to measure the thickness of a single page, even with a 
micrometer screw gauge, as the percentage error will be very high. Instead, use the 
screw gauge to measure the thickness of a large number of pages (but don’t include 
the covers!). 400 pages are about 18 mm thick. The uncertainty in this measurement, 
using a screw gauge, is ±0.01 mm, giving a percentage uncertainty of about ±0.05% 
in the thickness of all 400 pages. This is also the percentage uncertainty in the 
thickness of a single page. If an uncertainty of ±0.5% is acceptable, a vernier caliper 
should be used instead of the screw gauge.
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1
Examples of systematic uncertainty are:

» zero error on an instrument 
The scale reading is not zero before measurements are taken – see Figure 1.18. 
Check before starting the experiment. Another example of a zero error is when the 
end of a rule is worn– see Figure 1.19. The length of the object is clearly not 1.65 cm. 
For this reason, it is bad practice to place the zero end of the rule against one end 
of the object to be measured and to take the reading at the other end. You should 
place the object against the rule so that a reading is made at each end of the object. 
The length of the object is then obtained by subtraction of the two readings.

» wrongly calibrated scale 
In school laboratories we assume that measuring devices are correctly calibrated 
(have no systematic error), and would not be expected to check the calibration 
in an experiment. However, if you have doubts, you can check the calibration 
of an ammeter by connecting several in series in the circuit, or of a voltmeter 
by connecting several in parallel. A metre rule can be checked by laying 
several of them alongside each other. Thermometers can be checked by placing 
several in well-stirred water. These checks will not enable you to say which of 
the instruments are calibrated correctly, but they will show you if there is a 
discrepancy.

» reaction time of experimenter 
When timings are carried out manually, it must be accepted that there will be a 
delay between the experimenter observing the event and starting the timing device. 
This delay, called the reaction time, may be as much as a few tenths of a second. 
To reduce the effect, you should arrange that the intervals you are timing are much 
greater than the reaction time. For example, you should time sufficient swings of a 
pendulum for the total time to be of the order of at least ten seconds, so that a reaction 
time of a few tenths of a second is less important.

Random error
Random error results in readings being scattered around the accepted value. Random 
error may be reduced by repeating a reading and averaging, and by plotting a graph and 
drawing a best-fit line. Random error affects the precision of the measurement.

Examples of random errors are:

» reading a scale, particularly if this involves the experimenter’s judgement about 
interpolation between scale readings

» timing oscillations without the use of a reference marker, so that timings may not 
always be made to the same point of the swing

» taking readings of a quantity that varies with time, involving the difficulty of reading 
both a timer scale and another meter simultaneously

» reading a scale from different angles introduces a variable parallax error – see 
Figure 1.20. (In contrast, if a scale reading is always made from the same non-normal 
angle, this will introduce a systematic error.)

Parallax error may be reduced by arranging the rule so that there is no gap between the 
scale and the object. Parallax error is also important in reading any instrument in which 
a needle moves over a scale. A rather sophisticated way of eliminating parallax error is 
to place a mirror alongside the scale. When the needle and scale are viewed directly, the 
needle and its image in the mirror coincide. This ensures that the scale reading is always 
taken at the same viewing angle.

▲ Figure 1.20 Parallax 
error with a metre rule

1 2

▲ Figure 1.19 Zero error 
with a metre rule

A0

1
2 3

4

5

▲ Figure 1.18 This 
ammeter has a zero 
error of about −0.2 A.
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1.3 Errors and uncertainties

1

18 The length of a pencil is measured with a 30 cm rule. Suggest one possible source of:

a a systematic error

b a random error.

 In each case, suggest how the error may be reduced.

19 The diameter of a wire is to be measured to a precision of ±0.01 mm.

a Name a suitable instrument.

b Suggest a source of systematic error.

c Explain why it is good practice to average a set of diameter readings, taken 
spirally along the length of the wire.

Combining uncertainties
In many situations, in order to obtain the value of a physical quantity, several other 
quantities are measured. Each of these measured quantities has an uncertainty and 
these uncertainties must be combined in order to determine the uncertainty in the value 
of the physical quantity.

There are two simple rules for obtaining an estimate of the overall uncertainty in a final 
result for a derived quantity. The rules are:

1 For quantities which are added or subtracted to give a final result, add the 
absolute uncertainties.

2 For quantities which are multiplied together or divided to give a final result, 
add the fractional or percentage uncertainties.

Suppose that we wish to obtain the value of a physical quantity x by measuring two 
other quantities, y and z. The relation between x, y and z is known, and is

x = y + z

If the uncertainties in y and z are Δy and Δz respectively, the uncertainty Δx in x is given by

Δx = Δy + Δz

If the quantity x is given by

x = y − z

the uncertainty in x is again given by

Δx = Δy + Δz

Questions

WORKED EXAMPLE 1I

The current in a resistor is to be measured using an analogue ammeter. State one 
source of:
a a systematic error
b a random error.
In both cases, suggest how the error may be reduced.

Answers
a A systematic error could be a zero error on the meter, or a wrongly calibrated 

scale. This can be reduced by checking for a zero reading before starting the 
experiment, or using two ammeters in series to check that the readings agree.

b A random error could be a parallax error caused by taking readings from 
different angles. This can be reduced by the use of a mirror behind the scale and 
viewing normally.
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Note that this second example shows that a small difference between two quantities may 
have a large uncertainty, even if the uncertainty in measuring each of the quantities is 
small. This is an important factor in considering the design of experiments, where the 
difference between two quantities may introduce an unacceptably large error.

WORKED EXAMPLE 1J

1 I1 and I2 are two currents coming into a junction in a circuit. The current I going 
out of the junction is given by

 I = I1 + I2
 In an experiment, the values of I1 and I2 are determined as 2.0 ± 0.1 A and 1.5 ± 0.2 A 

respectively. What is the value of I? What is the uncertainty in this value?
2 In an experiment, a liquid is heated electrically, causing the temperature to 

change from 20.0 ± 0.2°C to 21.5 ± 0.5°C. Find the change of temperature, with its 
associated uncertainty.

Answers
1 Using the given equation, the value of I is given by I = 2.0 + 1.5 = 3.5 A.  

The rule for combining the uncertainties gives ΔI = 0.1 + 0.2 = 0.3 A.  
The result for I is thus (3.5 ± 0.3) A.

2 The change of temperature is 21.5 − 20.0 = 1.5°C. The rule for combining the 
uncertainties gives the uncertainty in the temperature change as 0.2 + 0.5 = 0.7°C. 
The result for the temperature change is thus (1.5 ± 0.7)°C.

20 Two set-squares and a ruler are used to measure the diameter of a cylinder. 
The cylinder is placed between the set-squares, and the set-squares are aligned with 
the ruler, in the manner of the jaws of calipers. The readings on the ruler at opposite 
ends of a diameter are 4.15 cm and 2.95 cm. Each reading has an uncertainty of 
±0.05 cm. 

a What is the diameter of the cylinder? 

b What is the uncertainty in the diameter?

Now suppose that we wish to find the uncertainty in a quantity x, whose relation to two 
measured quantities, y and z, is

x = Ayz

where A is a constant. The uncertainty in the measurement of y is ±Δy, and that in z is 
±Δz. The fractional uncertainty in x is given by adding the fractional uncertainties in 
y and z:

Δx/x = Δy/y + Δz/z

and the percentage uncertainty in x is given by adding the percentage uncertainties in 
y and z:

Δx/x × 100 = Δy/y × 100 + Δz/z × 100

To combine the uncertainties when the quantities are raised to a power, for example,

x = Ayazb

where A is a constant, the rule is to multiply the fractional uncertainties by the 
power, so

Δx/x = a(Δy/y) + b(Δz/z)

Similarly the percentage uncertainty in x is given by

Δx/x × 100 = a(Δy/y) × 100 + b(Δz/z) × 100

Question
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1.3 Errors and uncertainties

1

Note that it is not good practice to determine g from the measurement of the period of 
a pendulum of fixed length. It would be much better to take values of T for a number of 
different lengths l, and to draw a graph of T2 against l. The gradient of this graph is 4π2/g.

WORKED EXAMPLE 1K

The volume of a cylinder is determined by measuring its diameter and length. 
The diameter d was measured as 2.5 ± 0.1 cm and the length l measured as 
7.6 ± 0.1 cm. Determine the volume with its absolute uncertainty in cm3.

Answer
Volume = (πd2l)/4 = π × (2.5)2 × 7.6/4 = 37.31 cm3

The percentage uncertainties are (0.1/2.5) × 100% = 4.0% for d and  
(0.1/7.6) × 100% = 1.3% in l.

The percentage uncertainty in the volume is:

2 × percentage uncertainty in d + percentage uncertainty in l = 9.3%

The absolute uncertainty in the volume is 9.3% of 37.31 = 3.47 cm3.

The volume with its absolute uncertainty is 37 ± 3 cm3.

WORKED EXAMPLE 1L

A value of the acceleration of free fall g was determined by measuring the period of 
oscillation T of a simple pendulum of length l. The relation between g, T and l is

g = 4π2 l
T2

In the experiment, l was measured as 0.55 ± 0.02 m and T was measured as 
1.50 ± 0.02 s. Find the value of g, and the fractional and percentage uncertainties in 
this value.

Answer
Substituting in the equation, g = 4π2(0.55/1.502) = 9.7 m s−2. The fractional 
uncertainties are Δl/l = 0.020/0.55 = 0.036 and ΔT/T = 0.02/1.50 = 0.013.

Applying the rule to find the fractional uncertainty in g

Δg/g = Δl/l + 2ΔT/T = 0.036 + 2 × 0.013 = 0.062

The actual uncertainty in g is given by (value of g) × (fractional uncertainty in g) = 
9.7 × 0.062 = 0.60 m s−2. The experimental value of g, with its uncertainty, is thus 
(9.7 ± 0.6) m s−2.

The percentage uncertainties are 3.6% for l and 1.3% for T. The percentage 
uncertainty in g is given by 3.6% + 2 × 1.3% = 6.2%.

The absolute uncertainty in g is 6.2% of 9.7 also giving (9.7 ± 0.6) m s−2.

21 A value of the volume V of a cylinder is determined by measuring the radius r and 
the length L. The relation between V, r and L is

 V = πr2L

 In an experiment, r was measured as 3.30 ± 0.05 cm, and L was measured as 
25.4 ± 0.4 cm. Find the value of V, and the absolute uncertainty in this value.

22 The mass and dimensions of a metal rectangular block are measured. The values 
obtained are: mass = 1.50 ± 0.01 kg, length =70 ± 1 mm, breadth 60 ± 1 mm and depth 
40 ± 1 mm. Determine the density of the metal and its absolute uncertainty in kg m−3.

Questions
[AQ: ABSOLUTE, 
OR PERCENTAGE, 
OR BOTH?]
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1
If you find it difficult to deal with the fractional uncertainty rule, you can easily estimate 
the uncertainty by substituting extreme values into the equation. For x = Ayazb, taking 
account of the uncertainties in y and z, the lowest value of x is given by

xlow = A(y − Δy)a(z − Δz)b

and the highest by

xhigh = A(y + Δy)a(z + Δz)b

If xlow and xhigh are worked out, the uncertainty in the value of x is given by

 (xhigh − xlow)/2

WORKED EXAMPLE 1M

Apply the extreme value method to the data for the simple pendulum experiment in 
Worked example 1L.

Answer
Because of the form of the equation for g, the lowest value for g will be obtained if 
the lowest value of l and the highest value for T are substituted. This gives

glow = 4π2(0.53/1.522) = 9.1 m s−2

The highest value for g is obtained by substituting the highest value for l and the 
lowest value for T. This gives

ghigh = 4π2(0.57/1.482) = 10.3 m s−2

The uncertainty in the value of g is thus (ghigh − glow)/2 = (10.3 − 9.1)/2 = 0.6 m s−2, 
as before.

23 Apply the extreme value method to the data for the volume of the cylinder, in 
question 21.

If the expression for the quantity under consideration involves combinations of products 
(or quotients) and sums (or differences), then the best approach is the extreme value 
method.

1.4 Scalars and vectors
All physical quantities have a magnitude and a unit. For some quantities, magnitude 
and units do not give us enough information to fully describe the quantity. For example, 
if we are given the time for which a car travels at a certain speed, then we can calculate 
the distance travelled. However, we cannot find out how far the car is from its starting 
point unless we are told the direction of travel. In this case, the speed and direction 
must be specified.

A quantity which can be described fully by giving its magnitude and unit is 
known as a scalar quantity. They can be added algebraically.

A vector quantity has magnitude, unit and direction. They may not be added 
algebraically.

▲ Figure 1.21 Although the 
athlete runs 5 km in the 
race, his final distance 
from the starting point 
may well be zero!

Question
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1.4 Scalars and vectors

1
Some examples of scalar and vector quantities are given in Table 1.8.

quantity scalar vector
mass 

weight 

speed 

velocity 

acceleration 

force 

momentum 

energy 

power 

pressure 

temperature 

▲ Table 1.8 Some scalars and vectors

Note: It may seem that electric current should be treated as a vector quantity. We give 
current a direction when we deal with, for example, the motor effect (see Topic 20) and 
when we predict the direction of the magnetic field due to current-carrying coils and 
wires. However, electric current does not follow the laws of vector addition and should 
be treated as a scalar quantity.

WORKED EXAMPLE 1N

A ‘big wheel’ at a theme park has a diameter of 14 m and people on the ride complete 
one revolution in 24 s. Calculate:
a the distance a rider moves in 3.0 minutes
b the distance of the rider from the starting position.

Answers
a In 3.0 minutes, the rider completes (3.0 × 60)/24 = 7.5 revolutions.

distance travelled = 7.5 × circumference of wheel
 = 7.5 × 2π × 7.0
 = 330 m

b 7.5 revolutions completed. Rider is 1
2
 revolution from starting point. The rider is 

at the opposite end of a diameter of the big wheel. So, the distance from starting 
position = 14 m.

24 State whether the following quantities are scalars or vectors:

a time of departure of a train

b acceleration due to free fall

c density of a liquid.

25 State whether the following quantities are scalars or vectors:

a temperature

b frequency of vibration

c flow of water in a pipe.

26 Speed and velocity have the same units. Explain why speed is a scalar quantity 
whereas velocity is a vector quantity.

27 A student states that a bag of sugar has a weight of 10 N and that this weight is a vector 
quantity. Discuss whether the student is correct when stating that weight is a vector.

Questions
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Vector representation
When you hit a tennis ball, you have to judge the direction you want it to move in, as 
well as how hard to hit it. The force you exert is, therefore, a vector quantity and cannot 
be represented by magnitude (size) alone. One way to represent a vector is by means of 
an arrow. The direction of the arrow is the direction of the vector quantity. The length of 
the arrow, drawn to scale, represents its magnitude. This is illustrated in Figure 1.22.

b) velocity 10 m s–1, due south

N

S

Scale: 1 unit represents 5 m s–1

a) velocity 15 m s–1, due east

▲ Figure 1.22 Representation of a vector quantity

Addition of vectors
The addition of two scalar quantities which have the same unit is no problem. 
The quantities are added using the normal rules of addition. For example, a beaker 
of volume 250 cm3 and a bucket of volume 9.0 litres have a total volume of 9250 cm3.

Adding together two vectors is more difficult because they have direction as well as 
magnitude. If the two vectors are in the same direction, then they can simply be added 
together. Two objects of weight 50 N and 40 N have a combined weight of 90 N because 
both weights act in the same direction (vertically downwards). Figure 1.23 shows the effect 
of adding two forces of magnitudes 30 N and 20 N which act in the same direction or in 
opposite directions. The angle between the forces is 0° when they act in the same direction 
and 180° when they are in opposite directions. For all other angles between the directions 
of the forces, the combined effect, or resultant, is some value between 10 N and 50 N.

20 N 30 N

30 N

20 N

50 N

20 N 30 N

30 N

20 N 10 N

–

+

a)

b)

▲ Figure 1.23 Vector addition a) and vector subtraction b)

In cases where the two vectors do not act in the same or opposite directions, the 
resultant is found by means of a vector triangle. Each one of the two vectors V1 and 
V2 is represented in magnitude and direction by the side of a triangle. Note that both 
vectors must be in either a clockwise or an anticlockwise direction (see Figure 1.24). 
The combined effect, or resultant R, is given in magnitude and direction by the third 
side of the triangle. It is important to remember that, if V1 and V2 are drawn clockwise, 
then R is anticlockwise; if V1 and V2 are anticlockwise, R is clockwise.

R

V2

V1

R

V2

V1

▲ Figure 1.24 Vector 
triangles
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1.4 Scalars and vectors

1
The resultant may be found by means of a scale diagram. Alternatively, having drawn 
a sketch of the vector triangle, the problem may be solved using trigonometry (see the 
Maths Note at the end of Topic 1).

The subtraction of vectors obeys the same rules as the addition of the vectors. To subtract 
a vector B from a vector A, the vector B in the opposite direction is added to vector A.

A – B = A + (–B) where –B is a vector of the same magnitude as B but has opposite direction. 
For example, if vector A is a displacement of 3 m due north and vector B is a displacement 
of 4 m due east, then A + B is shown in Figure 1.25a and A – B is shown in Figure 1.25b.

▲ Figure 1.25

WORKED EXAMPLE 1O

A ship is travelling due north with a speed 
of 12 km h−1 relative to the water. There is 
a current in the water flowing at 4.0 km h−1 
in an easterly direction relative to the shore. 
Determine the velocity of the ship relative to 
the shore by:
a scale drawing
b calculation.

Answers
a By scale drawing (Figure 1.26):
 Scale: 1 cm represents 2 km h−1

 resultant R
 The velocity relative to the shore is:
 6.3 × 2 = 12.6 km h−1 in a direction  

18° east of north.
b By calculation:
 Referring to the diagram (Figure 1.27) and 

using Pythagoras’ theorem,

R

R

= 12 + 4 =160

= 160 = 12.6

tan =
4

12
= 0.33

= 18.4°

2 2 2

α

α

 The velocity of the ship relative to the shore 
is 12.6 km h−1 in a direction 18.4° east of 
north.

4.0kmh–1

12kmh–1

18°

R

▲ Figure 1.26

4

12 R

▲ Figure 1.27

28 Explain how an arrow may be used to represent a vector quantity.

29 Two forces are of magnitude 450 N and 240 N respectively. Determine:

a the maximum magnitude of the resultant force

b the minimum magnitude of the resultant force

c the resultant force when the forces act at right angles to each other.

 Use a vector diagram and then check your result by calculation.

Questions

B

A + BA

– B

A – B A

a)

b)

482807_01_CI_AS_Phy_SB_3e_001-028.indd   21 30/05/20   11:20 AM



22

1 
P

h
ys

ic
a

l 
q

u
a

n
ti

ti
e

s 
a

n
d

 u
n

it
s

1
30 A boat can be rowed at a speed of 7.0 km h−1 in still water. A river flows at a constant 

speed of 1.5 km h−1. Use a scale diagram to determine the angle to the bank at which 
the boat must be rowed in order that the boat travels directly across the river.

31 Two forces act at a point P as shown in Figure 1.28. Draw a vector diagram, to scale, 
to determine the resultant force. Check your work by calculation.

50 N 40°

80 N

P

▲ Figure 1.28

32 A swimmer who can swim in still water at a speed of 4 km h−1 is swimming in a river. 
The river flows at a speed of 3 km h−1. Calculate the speed of the swimmer relative to 
the river bank when she swims:

a downstream

b upstream.

33 Draw to scale a vector triangle to determine the resultant of the two forces shown in 
Figure 1.29. Check your answer by calculating the resultant.

6.0 N

9.0 N

▲ Figure 1.29

The use of a vector triangle for finding the resultant of two vectors can be demonstrated 
by means of a simple laboratory experiment. A weight is attached to each end of 
a flexible thread and the thread is then suspended over two pulleys, as shown in 
Figure 1.30. A third weight is attached to a point P near the centre of the thread.  
The string moves over the pulleys and then comes to rest. The positions of the threads 
are marked on a piece of paper held on a board behind the threads. This is easy to do if 
light from a small lamp is shone at the board. Having noted the sizes W1 and W2 of the 
weights on the ends of the thread, a vector triangle can then be drawn on the paper, as 
shown in Figure 1.31. The resultant of W1 and W2 is found to be equal in magnitude but 
opposite in direction to the weight W3. If this were not so, there would be a resultant 
force at P and the thread and weights would move. The use of a vector triangle is 
justified. The three forces W1, W2 and W3 are in equilibrium. The condition for the 
vector diagram of these forces to represent the equilibrium situation is that the three 
vectors should form a closed triangle.
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1.4 Scalars and vectors

1

W1 W3 W2

P

drawing
board

pulley

▲ Figure 1.30 Apparatus to check the use of a vector triangle

We have considered only the addition of two vectors. When three or more vectors need 
to be added, the same principles apply, provided the vectors are coplanar (all in the 
same plane). The vector triangle then becomes a vector polygon: the resultant forms the 
missing side to close the polygon.

To subtract two vectors, reverse the direction (that is, change the sign) of the vector to be 
subtracted, and add.

Resolution of vectors
Earlier in this section we saw that two vectors may be added together to produce 
a single resultant. This resultant behaves in the same way as the two individual 
vectors. It follows that a single vector may be split up, or resolved, into two vectors, or 
components. The combined effect of the components is the same as the original vector. 
In later topics, we will see that resolution of a vector into two perpendicular components 
is a very useful means of solving certain types of problem.

Consider a force of magnitude F acting at an angle of θ below the horizontal (see 
Figure 1.32. A vector triangle can be drawn with a component FH in the horizontal 
direction and a component FV acting vertically. Remembering that F, FH and FV form a 
right-angled triangle, then

         FH = F cos θ

and FV = F sin θ

The force F has been resolved into two perpendicular components, FH and FV. 
The example chosen is concerned with forces, but the method applies to all types of 
vector quantity.

W1

W3

W2

P

▲ Figure 1.31 The vector 
triangle

F FV

FH

q

▲ Figure 1.32 Resolving a 
vector into components
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34 An aircraft is travelling 35° east of north at a speed of 310 km h−1. Calculate the speed 
of the aircraft in:

a the northerly direction

b the easterly direction.

35 A cyclist is travelling down a hill at a speed of 9.2 m s−1. The hillside makes an angle 
of 6.3° with the horizontal. Calculate, for the cyclist:

a the vertical speed

b the horizontal speed.

WORKED EXAMPLE 1P

A glider is launched by an aircraft with a cable, as shown in Figure 1.33. At one 
particular moment, the tension in the cable is 620 N and the cable makes an angle of 
25° with the horizontal (see Figure 1.34). Calculate:
a the force pulling the glider horizontally
b the vertical force exerted by the cable on the nose of the glider.

620N

FV

FH
25°

▲	 Figure 1.33          	 	Figure 1.34

Answers
a horizontal component FH = 620 cos 25° = 560 N
b vertical component FV = 620 sin 25° = 260 N

SUMMARY

»	 All	physical	quantities	have	a	magnitude	(size)	and	
a	unit.

»	 The	SI	base	units	of	mass,	length,	time,	electric	
current,	thermodynamic	temperature	and	amount	
of	substance	are	the	kilogram,	metre,	second,	
ampere,	kelvin	and	mole	respectively.

»	 Units	of	all	mechanical,	electrical,	magnetic	and	
thermal	quantities	may	be	derived	in	terms	of	
these	base	units.

»	 Physical	equations	must	be	homogeneous	
(balanced).	Each	term	in	an	equation	must	have	
the	same	base	units.

»	 The	convention	for	printing	headings	in	tables	of	
data,	and	for	labelling	graph	axes,	is	the	symbol	
for	the	physical	quantity	(in	italic),	followed	by	a	
forward	slash,	followed	by	the	abbreviation	for	

the	unit	(in	roman).	In	handwriting,	one	cannot	
distinguish	between	italic	and	roman	type.

»	 The	order	of	magnitude	of	a	number	is	the	
power	of	ten	to	which	the	number	is	raised.	
The	order	of	magnitude	can	be	used	to	make	a	
check	on	whether	a	calculation	gives	a	sensible	
answer.

»	 Accuracy	refers	to	the	closeness	of	a	measured	
value	to	the	‘true’	or	‘known’	value.

»	 Precision	is	determined	by	the	size	of	the	random	
error	and	is	the	part	of	accuracy	which	can	be	
controlled	by	the	experimenter. Precision	refers	
to	how	close	a	set	of	measured	values	are	to	each	
other.

»	 Uncertainty	indicates	the	range	of	values	within	
which	a	measurement	is	likely	to	lie.

Questions	
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End of topic questions

END OF TOPIC QUESTIONS

1 Which of the following is an SI base unit?

 A ampere B coulomb C newton D joule

2 Which of the following is not a SI base quantity?

 A current B energy C mass D temperature

3 Which of the following is a vector?

 A electric charge B momentum C power D work

4  Which order of magnitude is represented by the prefix p (pico)?

 A 10−6 B 10−9 C 10−12 D 10−15

5 The speed of a sound wave through a gas of pressure P and density ρ is given by 
the equation

   v = kP

ρ
 where k is a constant.

 An experiment is performed to determine k. The percentage uncertainties in 
v, P and ρ are ±4%, ±2% and ±3% respectively. Which of the following gives the 
percentage uncertainty in k?

 A ±5% B ±9% C ±13% D ±21%

6 A girl walks at a speed of 1.5 m s−1 for 1.0 minutes in a direction of 35° north of 
east. How far east does she walk?

 A 52 m B 63 m C 74 m D 90 m

7 a i Explain what is meant by a base unit.
ii Give four examples of base units.

b State what is meant by a derived unit.

» A systematic uncertainty (or systematic error) is 
often due to instrumental causes, and results in 
all readings being either above or below the true 
value. It cannot be eliminated by averaging.

» A random uncertainty (or random error) is due to 
the scatter of readings around the true value. It may 
be reduced by repeating a reading and averaging, or 
by plotting a graph and taking a best-fit line.

» Combining uncertainties:
– for expressions of the form x = y + z or x = y − z, 

the overall uncertainty is Δx = Δy + Δz
– for expressions of the form x = yz or x = y/z 

the overall uncertainty is given by adding the 
fractional uncertainties or the percentage 
uncertainties

– for expressions of the form x = Ayazb, the overall 
fractional uncertainty is Δx/x = a(Δy/y) + b(Δz/z) or 
the overall percentage uncertainty  
(Δx/x) × 100 = a[(Δxy/y) × 100 + b[(Δz/z) × 100.

» A scalar quantity has magnitude and unit only.
» A vector quantity has magnitude, unit and direction.

» A vector quantity may be represented by an arrow, 
with the length of the arrow drawn to scale to give 
the magnitude.

» The combined effect of two (or more) vectors is 
called the resultant.

» Coplanar vectors may be added (or subtracted) 
using a vector diagram.

» The resultant may be found using a scale drawing 
of the vector diagram, or by calculation.

» A single vector may be divided into two separate 
components.

» The dividing of a vector into components is known 
as the resolution of the vector.

» In general, a vector is resolved into two 
components at right angles to each other.
– The resolved components of a vector of 

magnitude V acting at an angle θ to the 
horizontal are V cos θ horizontally and V sin θ 
vertically.
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c i For any equation to be valid, it must be homogeneous. Explain what is meant 

by a homogeneous equation.
ii The pressure P of an ideal gas of density ρ is given by the equation
 P = 1

3 
ρ<c2>

 where <c2> is the mean-square-speed (i.e. it is a quantity measured as 
(speed)2). Use base units to show that the equation is homogeneous.

8 The period T of a pendulum of mass M is given by the expression

   T = 2π
I

Mgh
 where g is the acceleration of free fall and h is a length.

 Determine the base units of the quantity I.

9 a Determine the base units of:
i work done,
ii the moment of a force.

b Explain why your answers to a mean that caution is required when the 
homogeneity of an equation is being tested.

10 Distinguish between accuracy and precision.

11 The mass of a coin is measured to be 12.5 ± 0.1 g. The diameter is 2.8 ± 0.1 cm and 
the thickness 2.1 ± 0.1 mm. Calculate the average density of the material from 
which the coin is made with its uncertainty. Give your answer in kg m−3.

12 a Distinguish between a scalar and a vector quantity.
b A mass of weight 120 N is hung from two strings as shown in Fig. 1.35.
 Determine, by scale drawing or by calculation, the tension in:

i RA,
ii RB.

c Use your answers in b to determine the horizontal component of the tension in:
i RA,
ii RB.

 Comment on your answer.
13 A fielder in a cricket match throws the ball to the wicket-keeper. At one moment 

of time, the ball has a horizontal velocity of 16 m s−1 and a velocity in the vertically 
upward direction of 8.9 m s−1.
a Determine, for the ball:

i its resultant speed,
ii the direction in which it is travelling relative to the horizontal.

b During the flight of the ball to the wicket-keeper, the horizontal velocity remains 
unchanged. The speed of the ball at the moment when the wicket-keeper 
catches it is 19 m s−1. Calculate, for the ball just as it is caught:
i its vertical speed,
ii the angle that the path of the ball makes with the horizontal.

c Suggest with a reason whether the ball, at the moment it is caught, is rising or 
falling.

14 a The spacing between two atoms in a crystal is 3.8 × 10−10 m. State this  
distance in pm. [1]

b Calculate the time of one day in Ms. [1]
c The distance from the Earth to the Sun is 0.15 Tm. Calculate the time  

in minutes for light to travel from the Sun to the Earth. [2]
d Identify all the vector quantities in the list below. 

distance energy momentum weight work [1]
e The velocity vector diagram for an aircraft heading due north is shown  

to scale in Fig. 1.36. There is a wind blowing from the north-west.
 The speed of the wind is 36 m s −1 and the speed of the aircraft is 250 m s−1.

wind

aircraft

45°

▲ Figure 1.36

120 N

R

A B

40°
50°

▲ Figure 1.35
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1
i Make a copy of Fig. 1.36. Draw an arrow to show the direction of the 

resultant velocity of the aircraft. [1]
ii Determine the magnitude of the resultant velocity of the aircraft. [2]

Cambridge International AS and A Level Physics (9702) Paper 23 Q1 Oct/Nov 2012

15 a i State the SI base units of volume. [1]
ii Show that the SI base units of pressure are kg m−1 s−2. [1]

b The volume V of liquid that flows through a pipe in time t is given by the 

 equation V
t

 = 
πPr4

8Cl  

 where P is the pressure difference between the ends of the pipe of radius r  
and length l. The constant C depends on the frictional effects of the liquid. 
Determine the base units of C. [3]

Cambridge International AS and A Level Physics (9702) Paper 21 Q1 May/June 2012

16 a Make estimates of:
i the mass, in kg, of a wooden metre rule, [1]
ii the volume, in cm3, of a cricket ball or a tennis ball. [1]

b A metal wire of length L has a circular cross-section of diameter d, as shown in 
Fig. 1.37.

 

L

d

 ▲ Figure 1.37

 The volume V of the wire is given by the expression

 V = πd2L 

4
 The diameter d, length L and mass M are measured to determine the density of 

the metal of the wire. The measured values are:
 d = 0.38 ± 0.01 mm,
 L = 25.0 ± 0.1 cm,
 M = 0.225 ± 0.001 g.
 Calculate the density of the metal, with its absolute uncertainty. Give your 

answer to an appropriate number of significant figures. [5]

Cambridge International AS and A Level Physics (9702), Paper 21 Q1 May/June 2016

17 a i Define pressure. [1]
ii Show that the SI base units of pressure are kg m−1 s−2. [1]

b Gas flows through the narrow end (nozzle) of a pipe. Under certain conditions, 
the mass m of gas that flows through the nozzle in a short time t is given by

 m 

t
 = kC Pρ

 where k is a constant with no units,
 C is a quantity that depends on the nozzle size,
 ρ is the density of the gas arriving at the nozzle,
 P is the pressure of the gas arriving at the nozzle.
 Determine the base units of C. [3]

Cambridge International AS and A Level Physics (9702) Paper 22 Q1 Oct/Nov 2016

18 a An analogue voltmeter is used to take measurements of a constant potential 
difference across a resistor.

 For these measurements, describe one example of:
i a systematic error, [1]
ii a random error. [1]

End of topic questions
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b The potential difference across a resistor is measured as 5.0 V ± 0.1 V.  

The resistor is labelled as having a resistance of 125 Ω ± 3%.
i Calculate the power dissipated by the resistor. [2]
ii Calculate the percentage uncertainty in the calculated power. [2]
iii Determine the value of the power, with its absolute uncertainty, to an 

appropriate number of significant figures. [2]

Cambridge International AS and A Level Physics (9702) Paper 23 Q1 May/June 2018

MATHS NOTE

Sine rule
For any triangle (Figure 1.38),

a 

sin A  = 
b 

sin B  = 
c 

sin C

Cosine rule
For any triangle,

a2 = b2 + c2 − 2bc cos A

b2 = a2 + c2 − 2ac cos B

c2   = a2 + b2 − 2ab cos C

Pythagoras’ theorem
For a right-angled triangle (Figure 1.39),

h2 = o2 + a2

Also for a right-angled triangle:

sin θ   = o
 

h
cos θ = a

 

h
 

tan θ  = o
 

a

ha

o

q

▲ Figure 1.39  ▲ Figure 1.38

B

b

a

c

A

C
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2.1 Equations of m
otion

Kinematics	 2	

2.1 Equations of motion
Distance, displacement, speed, velocity and acceleration
Distance and displacement
The distance moved by a particle is the length along the actual path travelled from the 
starting point to the finishing point. Distance is a scalar quantity.

The displacement of a particle is its change of position. The displacement is the length 
travelled in a straight line in a specified direction from the starting point to the finishing 
point. Displacement is a vector quantity.

Consider a cyclist travelling 500 m due east along a straight road, and then turning 
round and coming back 300 m. The total distance travelled is 800 m, but the 
displacement is only 200 m due east, since the cyclist has ended up 200 m from the 
starting point.

Learning outcomes
By the end of this topic, you will be able to:

2.1 Equations of motion
 1 define and use distance, displacement, speed, 

velocity and acceleration
 2 use graphical methods to represent 

distance, displacement, speed, velocity and 
acceleration

 3 determine displacement from the area under 
a velocity–time graph

 4 determine velocity using the gradient of a 
displacement–time graph

 5 determine acceleration using the gradient of  
a velocity–time graph

 6 derive, from the definitions of velocity and 
acceleration, equations that represent 

uniformly accelerated motion in a straight 
line

 7 solve problems using equations that 
represent uniformly accelerated motion 
in a straight line, including the motion of 
bodies falling in a uniform gravitational field 
without air resistance

 8 describe an experiment to determine the 
acceleration of free fall using a falling 
object

 9 describe and explain motion due to a 
uniform velocity in one direction and a 
uniform acceleration in a perpendicular 
direction

Starting points
★ Kinematics is a description of how objects move.
★ The motion of objects can be described in terms of quantities such as position, 

speed, velocity and acceleration.

AS LEVEL
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WORKED EXAMPLE 2A

 A particle moves from point A to point B along 
the path of a circle of radius 5.0 m as shown in 
Figure 2.1.
 What is
a the distance moved by the particle
b the displacement of the particle?

Answers
a  The actual path of the particle along the 

circumference of the circle = π × 5 = 16 m.
b  The displacement of the particle is the straight line from A to B along the 

diameter of the circle = 10 m in the direction downwards.

Average speed
When talking about motion, we shall discuss the way in which the position of a particle 
varies with time. Think about a particle moving its position. In a certain time, the 
particle will cover a certain distance. The average speed of the particle is defined as 
the distance moved along the actual path divided by the time taken. Written as a word 
equation, this is

average speed = 
distance moved along actual path

time taken

The unit of speed is the metre per second (m s–1).

One of the most fundamental of physical constants is the speed of light in a vacuum.  
It is important because it is used in the definition of the metre, and because, according to 
the theory of relativity, it defines an upper limit to attainable speeds. The range of typical 
speeds that you are likely to come across is enormous; some are summarised in Table 2.1.

speed/m s–1

light 3.0 × 108

electron around nucleus 2.2 × 106

Earth around Sun 3.0 × 104

jet airliner 2.5 × 102

typical car speed (80 km per hour) 22

sprinter 1.0 × 101

walking speed 1.5

snail 1.0 × 10–3

▲ Table 2.1 Examples of speeds

It is important to recognise that speed has a meaning only if it is quoted relative to a fixed 
reference. In most cases, speeds are quoted relative to the surface of the Earth, which – 
although it is moving relative to the Solar System – is often taken to be fixed. Thus, when 
we say that a bird can fly at a certain average speed, we are relating its speed to the Earth. 
However, a passenger on a ferry may see that a seagull, flying parallel to the boat, appears 
to be practically stationary. If this is the case, the seagull’s speed relative to the boat is 
zero. However, if the speed of the boat through the water is 8 m s–1, then the speed of the 
seagull relative to Earth is also 8 m s–1. When talking about relative speeds we must also be 
careful about directions. It is easy if the speeds are in the same direction, as in the example 

actual path

displacement

A

B

▲ Figure 2.1 The movement of a 
particle from A to B
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Speed and velocity
In ordinary language, there is no difference between the terms speed and velocity. 
However, in physics there is an important distinction between the two. Velocity is used 
to represent a vector quantity: the magnitude of how fast a particle is moving, and the 
direction in which it is moving. Speed does not have an associated direction. It is a 
scalar quantity (see Topic 1.4).

So far, we have talked about the total distance travelled by an object along its actual 
path. Like speed, distance is a scalar quantity, because we do not have to specify the 
direction in which the distance is travelled. However, in defining velocity we use the 
quantity displacement.

WORKED EXAMPLE 2B

1 The radius of the Earth is 6.4 × 106 m; one revolution about its axis takes 
24 hours (8.6 × 104 s).

 Calculate the average speed of a point on the Equator relative to the centre of 
the Earth.

2 How far does a cyclist travel in 11 minutes if his average speed is 22 km h–1?
3 A train is travelling at a speed of 25 m s–1 along a straight track. A boy walks 

along the corridor in  a carriage towards the rear of the train, at a speed of 1 m s–1 
relative to the train. What is his speed relative to Earth?

Answers
1 In 24 hours, the point on the equator completes one revolution and travels a 

distance of 2π × the Earth’s radius, that is 2π × 6.4 × 106 = 4.0 × 107 m.
 The average speed is (distance moved)/(time taken), or 4.0 × 107/8.6 × 104  

= 4.7 × 102 m s–1.
2 First convert the average speed in km h–1 to a value in m s–1.
 22 km (2.2 × 104 m) in 1 hour (3.6 × 103 s) is an average speed of 6.1 m s–1. 

11 minutes is 660 s.
 Since average speed is (distance moved)/(time taken), the distance moved is given by
  (average speed) × (time taken), or 6.1 × 660 = 4000 m.
 Note the importance of working in consistent units: this is why the average speed 

and the time were converted to m s–1 and s respectively.
3 In one second, the train travels 25 m forwards along the track. In the same time the 

boy moves 1 m towards the rear of the train, so he has moved 24 m along the track.
 His speed relative to Earth is thus 25 − 1 = 24 m s–1.

1 The speed of an electron in orbit about the nucleus of a hydrogen atom is 2.2 × 106 m s –1. 
It takes 1.5 × 10–16 s for the electron to complete one orbit. Calculate the radius of the orbit.

2 The average speed of an airliner on a domestic flight is 220 m s–1. Calculate the time 
taken to fly between two airports on a flight path 700 km long.

3 Two cars are travelling in the same direction on a long, straight road. The one in 
front has an average speed of 25 m s–1 relative to Earth; the other’s is 31 m s–1, also 
relative to Earth. What is the speed of the second car relative to the first when it is 
overtaking?

of the ferry and the seagull. If the speeds are not in the same direction the addition of the 
motions should follow those introduced for vectors as considered in Topic 1.4.

Questions
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The average velocity is defined as the displacement divided by the time taken.

Because distance and displacement are different quantities, the average speed of motion 
will sometimes be different from the magnitude of the average velocity. If the time taken 
for the cyclist’s trip in the example at the start of this Topic is 120 s, the average speed is 
800/120 = 6.7 m s–1, whereas the magnitude of the average velocity is 200/120 = 1.7 m s –1. 
This may seem confusing, but the difficulty arises only when the motion involves a change 
of direction and we take an average value. If we are interested in describing the motion 
of a particle at a particular moment in time, the speed at that moment is the same as the 
magnitude of the velocity at that moment.

We now need to define average velocity more precisely, in terms of a mathematical 
equation, instead of our previous word equation. Suppose that at time t1 a particle is at a 
point x1 on the x-axis (Figure 2.2). At a later time t2, the particle has moved to x2.  
The displacement (the change in position) is (x2 − x1), and the time taken is (t2 − t1).

The average velocity v  is then

v
x x

t t
=

–

–
2 1

2 1

The bar over v is the symbol meaning ‘average’. As a shorthand, we can write (x2 − x1) 
as Δx, where Δ (the Greek capital letter delta) means ‘the change in’. Similarly, t2 − t1 is 
written as Δt. This gives us

v
x

t

∆

∆
=

If x2 were less than x1, (x2 − x1) and Δx would be negative. This would mean that 
the particle had moved to the left, instead of to the right as in Figure 2.2. The sign 
of the displacement gives the direction of particle motion. If Δx is negative, then the 
average velocity v is also negative. The sign of the velocity, as well as the sign of the 
displacement, indicates the direction of the particle’s motion. This is because both 
displacement and velocity are vector quantities.

Describing motion by graphs
Position–time graphs
x

0

x2

x1

x3

t1 t2 t3 t

A

B

C

O

▲ Figure 2.3

Figure 2.3 is a graph of position x against time t for a particle moving in a straight line.

average velocity = 
displacement

time taken

x1 x2 x0

▲ Figure 2.2
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This curve gives a complete description of the motion of the particle. We can see from 
the graph that the particle starts at the origin O (at which x = 0) at time t = 0. From O 
to A the graph is a straight line: the particle is covering equal distances in equal periods 
of time. This represents a period of uniform (constant) velocity. The average velocity 
during this time is (x1 − 0)/(t1 − 0). Clearly, this is the gradient of the straight-line part 
of the graph between O and A. Between A and B the particle is slowing down, because 
the distances travelled in equal periods of time are getting smaller. The average velocity 
during this period is (x2 − x1)/(t2 − t1). On the graph, this is represented by the gradient 
of the straight line joining A and B. At B, for a moment, the particle is at rest, and after B 
it has reversed its direction and is heading back towards the origin. Between B and C the 
average velocity is (x3 − x2)/(t3 − t2). Because x3 is less than x2, this is a negative quantity, 
indicating the reversal of direction.

Calculating the average velocity of the particle over the relatively long intervals t1,  
(t2 − t1) and (t3 − t2) will not, however, give us the complete description of the motion. 
To describe the motion exactly, we need to know the particle’s velocity at every 
instant. We introduce the idea of instantaneous velocity. To define instantaneous 
velocity we make the intervals of time over which we measure the average velocity 
shorter and shorter. This has the effect of approximating the curved displacement–
time graph by a series of short straight-line segments. The approximation becomes 
better the shorter the time interval, as illustrated in Figure 2.4. Eventually, in the 
case of extremely small time intervals (mathematically we would say ‘infinitesimally 
small’), the straight-line segment has the same direction as the tangent to the curve. 
This limiting case gives the instantaneous velocity as the gradient of the tangent to the 
displacement–time curve.

▲ Figure 2.4

Displacement–time and velocity–time graphs

Figure 2.5 is a sketch graph showing how the displacement of a car, travelling along a 
straight test track, varies with time. We interpret this graph in a descriptive way by noting 
that between O and A the distances travelled in equal intervals of time are progressively 
increasing: that is, the velocity is increasing as the car is accelerating. Between A and B 
the distances for equal time intervals are decreasing; the car is slowing down. Finally, 
there is no change in position, even though time passes, so the car must be at rest. We can 
use Figure 2.5 to deduce the details of the way in which the car’s instantaneous velocity 
v varies with time. To do this, we draw tangents to the curve in Figure 2.5 at regular 
intervals of time, and measure the slope of each tangent to obtain values of v. The plot 
of v against t gives the graph in Figure 2.6. This confirms our descriptive interpretation: 
the velocity increases from zero to a maximum value, and then decreases to zero again. 
We will look at this example in more detail later on, where we shall see that the area under 
the velocity–time graph in Figure 2.6 gives the displacement x.

O

x

0 t

A
B

▲ Figure 2.5

O

v

A

t

B

0

▲ Figure 2.6
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WORKED EXAMPLE 2C

1 A sports car accelerates along a straight test track 
from rest to 70 km h–1 in 6.3 s. What is its average 
acceleration?

2 A railway train, travelling along a straight track, takes 
1.5 minutes to come to rest from a speed of 115 km h–1. 
What is its average acceleration while braking?

Answers
1 First convert the data into consistent units. 70 km 

(7.0 × 104 m) in 1 hour (3.6 × 103 s) is 19 m s–1.  

Since average acceleration is (change of velocity)/ 
(time taken), the acceleration is 19/6.3 = 3.0 m s–2.

2 115 km h–1 is 31.9 m s–1, and 1.5 minutes is 90 s.  
The average acceleration is (change of velocity)/ 
(time taken) = –31.9/90 = –0.35 m s–2.

 Note that the acceleration is a negative quantity 
because the change of velocity is negative: the 
final velocity is less than the initial. A negative 
acceleration is often called a deceleration.

Acceleration
We have used the word accelerating in describing the increase in velocity of the car in 
the previous section. Acceleration is a measure of the rate at which the velocity of the 
particle is changing. Average acceleration is defined by the word equation

average acceleration = change in velocity
time taken

The unit of acceleration is the unit of velocity (the metre per second) divided by the unit 
of time (the second), giving the metre per (second)2 which is represented as m s–2.  
In symbols, this equation is

a– = 
v v

t t

v

t
2 1

2 1

−
−

=
∆
∆

where v1 and v2 are the velocities at time t1 and t2 respectively. To obtain the instantaneous 
acceleration, we take extremely small time intervals, just as we did when defining 
instantaneous velocity. Because it involves a change in velocity (a vector quantity), 
acceleration is also a vector quantity: we need to specify both its magnitude and its direction.

A particle moving with uniform (constant) velocity has zero acceleration. This means 
that the magnitude (speed) of the particle and its direction are not changing with time.

We can deduce the acceleration of a particle from its velocity–time graph by drawing a 
tangent to the curve and finding the slope of the tangent. Figure 2.7 shows the result of 
doing this for the car’s motion described by Figure 2.5 (the displacement–time graph) 
and Figure 2.6 (the velocity–time graph). The car accelerates at a constant rate between 
O and A, and then decelerates (that is, slows down) uniformly between A and B.

An acceleration with a very familiar value is the acceleration of free fall near the Earth’s surface 
(discussed further below): this is 9.81 m s–2, often approximated to 10 m s–2. To illustrate the 
range of values you may come across, some accelerations are summarised in Table 2.2.

acceleration/m s–2

due to circular motion of electron around nucleus 9 × 1026

car crash 1 × 103

free fall on Earth 10

family car 2

free fall on Moon 2

at Equator, due to rotation of Earth 3 × 10–2

due to circular motion of Earth around Sun 6 × 10–5

▲ Table 2.2 Examples of accelerations

O

a

0
t

A

B

▲ Figure 2.7

482807_02_CI_AS_Phy_SB_3e_029-051.indd   34 30/05/20   11:44 AM



35

2.1 Equations of m
otion

2
Questions 4 A sprinter, starting from the blocks, reaches his full speed of 9.0 m s–1 in 1.5 s.  

What is his average acceleration?

5 A car is travelling at a speed of 25 m s–1. At this speed, it is capable of accelerating 
at 1.8 m s–2. How long would it take to accelerate from 25 m s–1 to the speed limit of 
31 m s–1?

6 At an average speed of 24 km h–1, how many kilometres will a cyclist travel in 
75 minutes?

7 An aircraft travels 1600 km in 2.5 hours. What is its average speed, in m s–1?

8 Does a car speedometer register speed or velocity? Explain.

9 An aircraft travels 1400 km at a speed of 700 km h–1, and then runs into a headwind 
that reduces its speed over the ground to 500 km h–1 for the next 800 km. What is 
the total time for the flight? What is the average speed of the aircraft?

10 A sports car can stop in 6.1 s from a speed of 110 km h–1. What is its acceleration?

11 Can the velocity of a particle change if its speed is constant? Can the speed of a particle 
change if its velocity is constant? If the answer to either question is ‘yes’, give examples.

Uniformly accelerated motion
Having defined displacement, velocity and acceleration, we shall use the definitions to 
derive a series of equations, called the kinematic equations, which can be used to give a 
complete description of the motion of a particle in a straight line. The mathematics will 
be simplified if we deal with situations in which the acceleration does not vary with 
time; that is, the acceleration is uniform (or constant). This approximation applies for 
many practical cases. However, there are two important types of motion for which the 
kinematic equations do not apply: circular motion and the oscillatory motion called 
simple harmonic motion. We shall deal with these separately in Topic 12 and Topic 17.

Think about a particle moving along a straight line with constant acceleration a. 
Suppose that its initial velocity, at time t = 0, is u. After a further time t its velocity has 
increased to v. From the definition of acceleration as (change in velocity) / (time taken), 
we have a = (v − u)/t or, re-arranging,

v = u + at

From the definition of average velocity v (distance travelled)/(time taken), over the time t the 
distance travelled s will be given by the average velocity multiplied by the time taken, or

s = v t 

The average velocity v is written in terms of the initial velocity u and final velocity v as

v  = 
u + v 

2
and, using the previous equation for v,

v  = (u + u + at)
2

 = u + at
2

Substituting this we have

s = ut + 
1
2 at2

The right-hand side of this equation is the sum of two terms. The ut term is the distance 
the particle would have travelled in time t if it had been travelling with a constant speed
u, and the 1

2
 at2 term is the additional distance travelled as a result of the acceleration.

The equation relating the final velocity v, the initial velocity u, the acceleration a and the 
distance travelled s is

v2 = u2 + 2as
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▲	 Figure	2.8 Strobe-flash 
photograph of objects in 
free fall

If you wish to see how this is obtained from previous equations, see the Maths Note below.

MATHS	NOTE

From v = u + at,

t = (v − u)/a

Substitute this in s = ut + 1
2
 at2

s = u(v − u)/a + 1
2

 a(v − u)2/a2

Multiplying both sides by 2a and expanding the terms,

2as = 2uv − 2u2 + v2 − 2uv + u2

or v2 = u2 + 2as

The five equations relating the various quantities which define the motion of the particle 
in a straight line in uniformly accelerated motion are

      v = u + at

       s = ut + 1
2
 at2

       s = vt − 1
2
 at2

v2 = u2  +  2as

       s = (u + v)t
2

In these equations u is the initial velocity, v is the final velocity, a is the acceleration,  
s is the distance travelled, and t is the time taken. The average velocity, v is given by  
(u + v)/2.

In solving problems involving kinematics, it is important to understand the situation 
before you try to substitute numerical values into an equation. Identify the quantity 
you want to know, and then make a list of the quantities you know already. This should 
make it obvious which equation is to be used.

Free fall acceleration
A very common example of uniformly accelerated motion is when an object falls freely 
near the Earth’s surface. Because of the gravitational field of the Earth, the Earth exerts 
a force on all objects dropped near its surface. The gravitational field near the surface of 
the Earth is taken to be uniform, so all objects fall with the same uniform acceleration. 
A Level Topic 13 will describe gravitational fields in more detail. This acceleration is 
called the acceleration of free fall, and is represented by the symbol g. It has a value 
of 9.81 m s–2, and is directed downwards. For completeness, we ought to qualify this 
statement by saying that the fall must be in the absence of air resistance, but in most 
situations this can be assumed to be true.

Determination of the acceleration of free fall
The acceleration of free fall may be determined in several ways. The most direct method 
involves timing the fall of an object from rest through a measured height. Note that, 
because the time of fall is likely to be only a few tenths of a second, a timing device that 
can measure to one-hundredth of a second is required.
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For example, a steel sphere is released from an electromagnet and falls under gravity.  
As it falls, it passes through two light gates which switch an electronic timer on and  
then off (Figure 2.9). The acceleration of free fall can be determined from the values of 
the time interval and distance between the two light gates.

In one example of an experiment to determine the acceleration of free fall, the fall of 
a steel ball is recorded using strobe-flash photography. A steel ball is released from an 
electromagnet and falls under gravity (Figure 2.10). A video camera is used to produce 
a film of the ball’s fall. A stroboscope is used to flash a light at a selected frequency. 
The film shows the position of the ball at regular intervals of time against the scale on a 
measuring tape or metre rule as the ball falls vertically (Figure 2.11).

electromagnet

light gate

sphere

light gate

▲ Figure 2.9 
Determination of the 
acceleration of free 
fall using a ball falling 
between two light gates

electromagnet

steel ball

metre rule

dark background
darkened room

video camera

stroboscope

▲ Figure 2.10 An experiment to determine the acceleration due to free fall
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▲ Figure 2.11 Strobe-flash 
image of a ball in free 
fall

If the object falls from rest, we can use the second of the equations for uniformly 
accelerated motion in the form

s = 1
2
 at2

to calculate the value of g. The frequency of the stroboscope gives the time interval to 
one-hundredth of a second between flashes of light and hence the images of the ball 
on the film. Table 2.3 shows a typical set of results. A frequency of 20 Hz was used for 
the stroboscope and the time interval obtained from T = 1/f. The time of zero is taken 
at the first clear image of the ball. A graph of the displacement s against t2 should give a 
straight line of gradient 1

2
 a from which g can be calculated.

position/m time/s

0.012 0.05

0.049 0.10

0.110 0.15

0.196 0.20

0.306 0.25

0.441 0.30

▲ Table 2.3 The position and time for a free falling steel ball, using the stroboscope method 
with a stroboscope frequency of 20 Hz
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12 Use the data given in Table 2.3 to plot a graph of displacement against time squared. 
Determine the acceleration of free fall from the gradient of your graph.

Acceleration of free fall
Until the sixteenth century, the idea of the acceleration of a falling object was not fully 
appreciated. It was commonly thought that heavier bodies fell faster than light ones. 
This idea was a consequence of observing the effect of air resistance on light objects 
with a large surface area, such as feathers. However, Galileo Galilei (1564–1642) 
suggested that, in the absence of resistance, all bodies would fall with the same 

WORKED EXAMPLE 2D

Use Table 2.3 to calculate the average velocity:
a between the first two positions in the table and
b the last two positions in the table.
Hence show the average acceleration of the ball is 9.8 m s–2.

Answers
a  average velocity = (0.49 − 0.012)/0.05 = 0.74 m s–1

b  average velocity = (0.441 − 0.306)/0.05 = 2.7 m s–1

The average acceleration = (2.7 − 0.74)/0.2 = 9.8 m s–2

Question

MATHS NOTE

Straight-line graphs
The representation of data in a graphical form is a 
very important means by which relationships between 
variables can be determined.

The plotting of data points provides an averaging which 
may well be superior to an arithmetical mean. Where 
an arithmetical mean is calculated, each set of data 
has an equal weighting. When using a best-fit line on 
a graph, the average is weighted towards those data 
points close to the line. A wayward point (anomalous 
point) can be detected and allowance made – perhaps 
taking a new set of measurements.

An important type of graph which is used frequently 
in Cambridge International AS & A Level Physics is the 
straight-line graph, as illustrated in Figure 2.12.

x0

c

y

Δy

Δx

▲ Figure 2.12

The equation representing this graph is

y = mx + c

where m and c are constants.

The constant m is the gradient of the graph,  
m = Δy/Δx.

The constant c is the intercept on the y-axis.

If a variable y is thought to vary linearly with x, then 
plotting this graph will enable the following:
» the straight line with an intercept of c verifies a linear 

relationship between y and x
» determination of the values of the gradient m 

and the intercept c enables the exact form of the 
relationship to be established.

If the intercept is zero, the straight line passes through 
the origin. The relationship is y = mx. This special case 
with c = 0 means that y is proportional to x.

Relationships may also be based on powers. 
For example,

R = a + bSn

where a, b and n are constants. A graph of R against 
Sn gives a straight-line graph with gradient b and an 
intercept on the R axis of a.
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constant acceleration. He showed mathematically that, for an object falling from rest, 
the displacement travelled is proportional to the square of the time. Galileo tested the 
relation experimentally by timing the fall of objects from various levels of the Leaning 
Tower of Pisa (Figure 2.13).

This is the relation we have derived as s = ut + 1
2
 at2. For an object starting from rest,  

u = 0 and s = 1
2

 at2. That is, the displacement is proportional to time squared.

▲ Figure 2.14 Galileo in his study▲ Figure 2.13 Leaning 
Tower of Pisa

WORKED EXAMPLE 2E

1 A car increases its speed from 25 m s–1 to 31 m s–1 
with a uniform acceleration of 1.8 m s–2. How far 
does it travel while accelerating?

2 The average acceleration of a sprinter from the time 
of leaving the blocks to reaching her maximum 
speed of 9.0 m s–1 is 6.0 m s–2. For how long does 
she accelerate? What distance does she cover in this 
time?

3 A cricketer throws a ball vertically upward into the 
air with an initial velocity of 18.0 m s–1. How high 
does the ball go? How long is it before it returns to 
the cricketer’s hands?

Answers
1 In this problem we want to know the distance s.  

We know the initial speed u = 25 m s–1, the final 
speed v = 31 m s–1, and the acceleration a = 1.8 m s–2.

 We need an equation linking s with u, v and a.  
This is

v2 = u2 + 2as

 Substituting the values gives 312 = 252 + 2 × 1.8s.
 Re-arranging, s = (312 − 252)/(2 × 1.8) = 93 m.
2 In the first part of this problem, we want to know 

the time t. We know the initial speed u = 0, the final 
speed v = 9.0 m s–1, and the acceleration a = 6.0 m s–2. 
We need an equation linking t with u, v and a. This is

v = u + at
 Substituting the values, we have 9.0 = 0 + 6.0t.  

Re-arranging, t = 9.0/6.0 = 1.5 s.
 For the second part of the problem, we want to 

know the distance s. We know the initial speed  
u = 0, the final speed v = 9.0 m s–1, and the 
acceleration a = 6.0 m s–2; we have also just found 
the time t = 1.5 s. There is a choice of equations 
linking s with u, v, a and t. We can use

s = ut + 1
2
 at2

 Substituting the values, s = 0 + 
1
2 × 6.0 × (1.5)2 = 6.8 m.

 Another relevant equation is v  = Δx/Δt. Here the 
average velocity v  is given by v  = (u + v)/2 = 4.5 m s–1. 
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Δx/Δt is the same as s/t, so 4.5 = s/1.5, and  
s = 4.5 × 1.5 = 6.8 m as before.

3 In the first part of the problem, we want to know  
the distance s. We know the initial velocity  
u = 18.0 m s–1 upwards and the acceleration  
a = g = 9.81 m s–2 downwards. At the highest point 
the ball is momentarily at rest, so the final velocity  
v = 0. The equation linking s with u, v and a is

v2 = u2 + 2as
 Substituting the values, 0 = (18.0)2 + 2(–9.81)s. 

Thus s = –(18.0)2/2(–9.81) = 16.5 m. Note that here 
the ball has an upward velocity but a downward 
acceleration, and that at the highest point the 
velocity is zero but the acceleration is not zero.

 In the second part we want to know the time t for 
the ball’s up-and-down flight. We know u and a, 
and also the overall displacement s = 0, as the ball 
returns to the same point at which it was thrown. 
The equation to use is

s = ut + 
1
2 at2

 Substituting the values, 0 = 18.0t + (
1
2 − 9.81)t2.  

Doing some algebra, t(36.0 − 9.81t) = 0. There are two 
solutions, t = 0 and t = 36.0/9.81 = 3.7 s. The t = 0 
value corresponds to the time when the displacement 
was zero when the ball was on the point of leaving 
the cricketer’s hands. The answer required here is 
3.7 s.

13 An airliner must reach a speed of 110 m s–1 to take off. If the available length of the 
runway is 2.4 km and the aircraft accelerates uniformly from rest at one end, what 
minimum acceleration must be available if it is to take off?

14 A speeding motorist passes a traffic police officer on a stationary motorcycle.  
The police officer immediately gives chase: his uniform acceleration is 4.0 m s–2, and 
by the time he draws level with the motorist he is travelling at 30 m s–1. How long 
does it take for the police officer to catch the car? If the car continues to travel at a 
steady speed during the chase, what is that speed?

15 A cricket ball is thrown vertically upwards with a speed of 15.0 m s–1. What is its 
velocity when it first passes through a point 8.0 m above the cricketer’s hands?

Graphs of the kinematic equations
It is often useful to represent the motion of a particle graphically, instead of by means  
of a series of equations. In this section we bring together the graphs which correspond 
to the equations we have already derived. We shall see that there are some important 
links between the graphs.

First, think about a particle moving in a straight line with constant velocity. 
Constant velocity means that the particle covers equal distances in equal intervals  
of time. A graph of displacement x against time t is thus a straight line, as in  
Figure 2.15. Here the particle has started at x = 0 and at time t = 0. The slope of 
the graph is equal to the magnitude of the velocity, since, from the definition of 
average velocity, v  = (x2 − x1)/(t2 − t1) = Δx/Δt. Because this graph is a straight line, 
the average velocity and the instantaneous velocity are the same. The equation 
describing the graph is x = vt.

Now think about a particle moving in a straight line with constant acceleration. The 
particle’s velocity will change by equal amounts in equal intervals of time. A graph of 
the magnitude v of the velocity against time t will be a straight line, as in Figure 2.16.

Here the particle has started with velocity u at time t = 0. The slope of the graph is 
equal to the magnitude of the acceleration. The graph is a straight line showing that the 
acceleration is a constant. The equation describing the graph is v = u + at.

An important feature of the velocity–time graph is that we can deduce the displacement 
of the particle by calculating the area between the graph and the t-axis, between 
appropriate limits of time. Suppose we want to obtain the displacement of the particle 
between times t1 and t2 in Figure 2.16. Between these times the average v velocity is 

0

x

x2

x1

tt1 t2

Δt

Δx

▲ Figure 2.15

Δt

A B

u

v

0 tt1 t2

v

▲ Figure 2.16

Questions  
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represented by the width of the horizontal line AB. The area between the graph and the 
t-axis is equal to the area of the rectangle whose top edge is AB. This area is vΔt. But, by 
the definition of average velocity (v  = Δx/Δt), vΔt is equal to the displacement Δx during 
the time interval Δt.

We can deduce the graph of displacement s against time t from the velocity–time graph 
by calculating the area between the graph and the t-axis for a succession of values of t.  
As shown in Figure 2.16, we can split the area up into a number of rectangles. The 
displacement at a certain time is then just the sum of the areas of the rectangles 
up to that time. Since the graph is linear, the area under the graph is the area of 
a trapezium, which can also be found as the sum of the area of a rectangle and a 
triangle.

Figure 2.17 shows the result of plotting the displacement s determined in this way 
against time t. It is a curve with a slope which increases the higher the value of t, 
indicating that the particle is accelerating. The slope at a particular time gives the 
magnitude of the instantaneous velocity. The equation describing Figure 2.17 is

s = ut + 
1
2 at2

s

0 t

slope = v

▲ Figure 2.17

WORKED EXAMPLE 2F

The displacement–time graph for a car on a straight test track is shown in Figure 2.18. 
Use this graph to draw velocity–time and acceleration–time graphs for the test run.

200

100di
sp

la
ce

m
en

t/
m

time/s
0

0
2 4 6 8 10 12 14 16

▲ Figure 2.18 Displacement–time graph

Answer
We have already met this graph when we discussed the concepts of velocity and 
acceleration (Figure 2.5). In Figure 2.18 it has been re-drawn to scale, and figures 
have been put on the displacement and time axes. We find the magnitude of the 
velocity by measuring the gradient of the displacement–time graph. As an example, a 
tangent to the graph has been drawn at t = 6.0 s. The slope of this tangent is 18 m s–1. 
If the process is repeated at different times, the following velocities are determined.

t/s 2  4  6  8 10 12 14 16

v/m s−1 6 12 18 24 30 20 10  0

▲ Table 2.4

These values are plotted on the velocity–time graph of Figure 2.19. Check some of 
the values by drawing tangents yourself. Hint: When drawing tangents, use a mirror 
or a transparent ruler.

Figure 2.19 shows two straight-line portions. Initially, from t = 0 to t = 10 s, the car is 
accelerating uniformly, and from t = 10 s to t = 16 s it is decelerating. The acceleration 
is given by a = Δv/Δt = 30/10 = 3 m s–2 up to t = 10 s. Beyond t = 10 s the acceleration 
is –30/6 = –5 m s–2. (The minus sign shows that the car is decelerating.)
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▲ Figure 2.19 Velocity–time graph

The acceleration–time graph is plotted in Figure 2.20.
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▲ Figure 2.20 Acceleration–time graph

Finally, we can confirm that the area under a velocity–time graph gives the 
displacement.

The area under the line in Figure 2.19 is the sum of the area of two triangles:

( 1
2
  × 10 × 30) + ( 1

2
  × 6 × 30) = 240 m

the value of s at t = 16 s on Figure 2.18.

Displacement for non-uniform acceleration
We have shown that for constant acceleration, we can deduce the displacement of the 
particle by calculating the area between the velocity–time graph and the t-axis.  
For the simple case for constant acceleration, the velocity–time graph is linear and the 
area under the graph is the area of a triangle (or, for where the graph line doesn’t start 
from the origin), the area of a trapezium. The unit for the displacement calculated by the 
area under the line is given by the product of the units on the axes for the velocity and 
time. For example, if the velocity is in m s–1 and the time in seconds the displacement 
is given in m ( m s–1 × s). Similarly if velocity is in km h–1 and the time in hours the 
displacement is in km (km h–1 × h).

The analysis we did for Figure 2.16 also applies to cases where the acceleration is 
variable (non-uniform) and the velocity-time graph is curved. In this case the area 
under the curve can be estimated by counting the squares and working out from the 
scales on the axes what displacement the area of each square represents.

The area under the velocity–time graph represents the displacement.
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16 In a test of a sports car on a straight track, the following readings of velocity v were 

obtained at the times t stated.

t/s 0  5 10 15 20 25 30 35

v/m s−1 0 15 23 28 32 35 37 38

▲ Table 2.5

a On graph paper, draw a velocity–time graph and use it to determine the 
acceleration of the car at time t = 5 s.

b Find also the total distance travelled between t = 0 and t = 30 s.

 Note: These figures refer to a case of non-uniform acceleration, which is more 
realistic than the previous example. However, the same rules apply: the acceleration 
is given by the slope of the velocity–time graph at the relevant time, and the distance 
travelled can be found from the area under the graph.

Two-dimensional motion under a constant force
So far we have been dealing with motion along a straight line; that is, one-dimensional 
motion. We will now think about the motion of particles moving in paths in two 
dimensions. We shall need to make use of ideas we have already learnt regarding 
vectors in Topic 1. The particular example we shall take is where a particle moves 
in a plane under the action of a constant force. An example is the motion of a ball 
thrown at an angle to the vertical (Figure 2.21), or an electron moving at an angle to an 
electric field. In the case of the ball, the constant force acting on it is its weight. For the 
electron, the constant force is the electric force provided by the electric field (Topic 18).

This topic is often called projectile motion. Galileo first gave an accurate analysis 
of this motion. He did so by splitting the motion up into its vertical and horizontal 
components, and considering these separately. The key is that the two components can 
be considered independently.

As an example, think about a particle sent off in a horizontal direction and subject to a 
vertical gravitational force (its weight). As before, air resistance will be neglected. We will 
analyse the motion in terms of the horizontal and vertical components of velocity. The 
particle is projected at time t = 0 at the origin of a system of x, y co-ordinates (Figure 2.22) 
with velocity ux in the x-direction. Think first about the particle’s vertical motion (in the 
y-direction). Throughout the motion, it has an acceleration of g (the acceleration of free 
fall) in the y-direction. The initial value of the vertical component of velocity is uy = 0. 
The vertical component increases continuously under the uniform acceleration g. Using  
v = u + at, its value vy at time t is given by vy = gt. Also at time t, the vertical displacement y 
downwards is given by y = 12 gt2. Now for the horizontal motion (in the x-direction): here 
the acceleration is zero, so the horizontal component of velocity remains constant at ux.  
At time t the horizontal displacement x is given by x = uxt. To find the velocity of the 
particle at any time t, the two components vx and vy must be added vectorially.  
The direction of the resultant vector is the direction of motion of the particle. The curve 
traced out by a particle subject to a constant force in one direction is a parabola.

▲ Figure 2.21 Cricketer 
bowling the ball

0 ux ux t x

vx

vy

y

y = 12  gt 2

▲ Figure 2.22

Question 
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▲ Figure 2.23 Water jets from a garden sprinkler showing a parabola-shaped spray

If the particle had been sent off with velocity u at an angle θ to the horizontal, as 
in Figure 2.24, the only difference to the analysis of the motion is that the initial 
y-component of velocity is u sin θ. In the example illustrated in Figure 2.24, this is 
upwards. Because of the downwards acceleration g, the y-component of velocity 
decreases to zero, at which time the particle is at the crest of its path, and then  
increases in magnitude again but this time in the opposite direction. The path is  
again a parabola.

For the particular case of a particle projected with velocity u at an angle θ to the horizontal 
from a point on level ground (Figure 2.25), the range R is defined as the distance from the 
point of projection to the point at which the particle reaches the ground again. We can 
show that R is given by

R = 
(u2 sin2θ)

g

For details, see the Maths Note below.

u

x
0

y

q

▲ Figure 2.24

▲ Figure 2.25

u

R

q

MATHS NOTE

Suppose that the particle is projected from the origin 
(x = 0, y = 0). We can interpret the range R as being 
the horizontal distance x travelled at the time t when 
the value of y is again zero. The equation which links 
displacement, initial speed, acceleration and time is  
s = ut + 1

2
 at2. Adapting this for the vertical component  

of the motion, we have

0 = (u sin θ)t − 1
2
 gt2

The two solutions of this equation are t = 0 and  
t = (2u sin θ)/g. The t = 0 case is when the particle 
was projected; the second is when it returns to the 
ground at y = 0. We use this second value of t with 

the horizontal component of velocity cos θ to find the 
distance x travelled (the range R). This is

x = R = (u cos θ)t = (2u2 sin θ cos θ)/g

There is a trigonometric relationship  
sin 2θ = 2 sin θ cos θ, use of which puts the range 
expression in the required form

R = (u2 sin 2θ)/g

We can see that R will have its maximum value for a 
given speed of projection u when sin 2θ = 1, or 2θ = 90°, 
or θ = 45°. The value of this maximum range is  
Rmax = u2/g.
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WORKED EXAMPLE 2G

1 A stone is thrown from the top of a vertical cliff, 45 m high above level ground, 
with an initial velocity of 15 m s–1 in a horizontal direction (Figure 2.26).  
How long does it take to reach the ground? How far from the base of the cliff is it 
when it reaches the ground?

45 m

15 m s–1

▲ Figure 2.26

2 An electron, travelling with a velocity of 2.0 × 107 m s–1 in a horizontal direction, 
enters a uniform electric field. This field gives the electron a constant acceleration 
of 5.0 × 1015 m s–2 in a direction perpendicular to its original velocity (Figure 2.27). 
The field extends for a horizontal distance of 60 mm. What is the magnitude and 
direction of the velocity of the electron when it leaves the field?

Answers
1 To find the time t for which the stone is in the air, work with the vertical 

component of the motion, for which we know that the initial component of 
velocity is zero, the displacement y = 45 m, and the acceleration a is 9.81 m s–2. 
The equation linking these is y = 1

2
 gt2. Substituting the values, we have  

45 = 1
2
 × 9.81t2. This gives t = √(2 × 45/9.81) = 3.0 s.

 For the second part of the question, we need to find the horizontal distance x travelled 
in the time t. Because the horizontal component of the motion is not accelerating, x is 
given simply by x = uxt. Substituting the values, we have x = 15 × 3.0 = 45 m.

2 The horizontal motion of the electron is not accelerated. The time t spent by the 
electron in the field is given by t = x/ux = 60 × 10–3/2.0 × 107 = 3.0 × 10–9 s.  
When the electron enters the field, its vertical component of velocity is zero; in 
time t, it has been accelerated to vy = at = 5.0 × 1015 × 3.0 × 10–9 = 1.5 × 107 m s–1. 
When the electron leaves the field, it has a horizontal component of velocity  
vx = 2.0 × 107 m s–1, unchanged from the initial value ux. The vertical component 
is vy = 1.5 × 107 m s–1. The resultant velocity v is given by v = √(vx

2 + vy
2) =  

√[(2.0 × 107)2 + (1.5 × 107)2] = 2.5 × 107 m s–1. The direction of this resultant 
velocity makes an angle θ to the horizontal, where θ is given by tan θ = vy/vx =  
1.5 × 107/2.0 × 107. The angle θ is 37°.

electric field
region

60 mm

2.0 × 107 m s–1

▲ Figure 2.27

17 A ball is thrown horizontally from the top of a tower 
30 m high and lands 15 m from its base (Figure 2.28). 
What is the ball’s initial speed?

18 A football is kicked on level ground at a velocity of 
15 m s–1 at an angle of 30° to the horizontal  
(Figure 2.29). How far away is the first bounce?

15 m s–1

30°

s

▲ Figure 2.29

30 m

15 m

u

▲ Figure 2.28

Questions  
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19 A car accelerates from 5.0 m s–1 to 20 m s–1 in 6.0 s. Assuming uniform acceleration, 

how far does it travel in this time?
20 If a raindrop were to fall from a height of 1 km, with what velocity would it hit the 

ground if there were no air resistance?
21 Traffic police can estimate the speed of vehicles involved in accidents by the length 

of the marks made by skidding tyres on the road surface. It is known that the 
maximum deceleration that a car can attain when braking on a normal road surface 
is about 9 m s–2. In one accident, the tyre-marks were found to be 125 m long. 
Estimate the speed of the vehicle before braking.

22 On a theme park ride, a cage is travelling upwards at constant speed. As it passes a 
platform alongside, a passenger drops coin A through the cage floor. At exactly the 
same time, a person standing on the platform drops coin B from the platform.
a Which coin, A or B (if either), reaches the ground first?
b Which (if either) has the greater speed on impact?

23 William Tell was faced with the agonising task of shooting an apple from his son 
Jemmy’s head.

 Assume that William is placed 25 m from Jemmy; his crossbow fires a bolt with an 
initial speed of 45 m s–1. The crossbow and apple are on the same horizontal line.  
At what angle to the horizontal should William aim so that the bolt hits the apple?

24 The position of a sports car on a straight test track is monitored by taking a series of 
photographs at fixed time intervals. The following record of position x was obtained 
at the stated times t.

t/s 0 0.5 1.0 1.5 2.0  2.5  3.0  3.5  4.0  4.5  5.0
x/m 0 0.4 1.8 4.2 7.7 12.4 18.3 25.5 33.9 43.5 54.3

▲ Table 2.6

On graph paper, draw a graph of x against t. Use your graph to obtain values for the 
velocity v of the car at a number of values of t. Draw a second graph of v against t. 
From this graph, what can you deduce about the acceleration of the car?

SUMMARY

» Distance is the length along the actual path 
travelled and is a scalar quantity. Displacement 
is the distance travelled in a straight line in a 
specified direction and is a vector quantity.

» Speed is a scalar quantity and is described by 
magnitude only. Velocity is a vector quantity and 
requires magnitude and direction.

» Average speed is defined by:  
(actual distance moved)/(time taken).

» Average velocity is defined by:  
(displacement)/(time taken) or Δx/Δt.

» The instantaneous velocity is the average velocity 
measured over an infinitesimally short time interval.

» Average acceleration is defined by:  
(change in velocity)/(time taken) or Δv/Δt.

» Acceleration is a vector. Instantaneous 
acceleration is the average acceleration measured 
over an infinitesimally short time interval.

» The gradient of a displacement-time graph gives 
the velocity.

» The gradient of a velocity–time graph gives the 
acceleration.

» The area between a velocity–time graph and the 
time axis gives the displacement.

» The equations for an object moving in a straight 
line with uniform acceleration are:

 v = u + at

 s = ut + 1
2
 at2

 s = vt − 1
2
 at2

 v2 = u2 + 2as

 s = 
(u	+	v)	t

2
» Objects falling freely near the surface of the Earth 

in the absence of air resistance, experience the 
same acceleration, the acceleration of free fall g, 
which has the value g = 9.81 m s−2.

» The acceleration of free fall for a falling object can 
be determined by measuring the position of the 
object at different times after being released.

» The motion of projectiles is analysed in terms 
of two independent motions at right angles. 
The horizontal component of the motion is at a 
constant velocity, while the vertical motion is 
subject to a constant acceleration g.
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2
END OF TOPIC QUESTIONS

1 In a driving manual, it is suggested that, when driving at 13 m s−1 (about 45 km per 
hour), a driver should always keep a minimum of two car-lengths between the 
driver’s car and the one in front.
a Suggest a scientific justification for this safety tip, making reasonable 

assumptions about the magnitudes of any quantities you need.
b How would you expect the length of this ‘exclusion zone’ to depend on speed for 

speeds higher than 13 m s−1?
2 A student, standing on the platform at a railway station, notices that the first two 

carriages of an arriving train pass her in 2.0 s, and the next two in 2.4 s. The train 
is decelerating uniformly. Each carriage is 20 m long. When the train stops, the 
student is opposite the last carriage. How many carriages are there in the train?

3 A ball is to be kicked so that, at the highest point of its path, it just clears a 
horizontal cross-bar on a pair of goal-posts. The ground is level and the cross-
bar is 2.5 m high. The ball is kicked from ground level with an initial velocity of 
8.0 m s−1.
a Calculate the angle of projection of the ball and the distance of the point where 

the ball was kicked from the goal-line.
b Also calculate the horizontal velocity of the ball as it passes over the  

cross-bar.
c For how long is the ball in the air before it reaches the ground on the far side of 

the cross-bar?
4 An athlete competing in the long jump leaves the ground at an angle of 28° and 

makes a jump of 7.40 m.
a Calculate the speed at which the athlete took off.
b If the athlete had been able to increase this speed by 5%, what percentage 

difference would this have made to the length of the jump?
5 A hunter, armed with a bow and arrow, takes direct aim at a monkey hanging from 

the branch of a tree. At the instant that the hunter releases the arrow, the monkey 
takes avoiding action by releasing its hold on the branch. By setting up the relevant 
equations for the motion of the monkey and the motion of the arrow, show that the 
monkey was mistaken in its strategy.

6 A car travels due north at a constant speed of 30 m s−1 for 2.0 minutes. The car then 
travels due east at a constant speed of 20 m s−1 for four minutes. What is the total 
distance travelled by the car?

 A 140 m B 8400 m C 9000 m D 9100 m
7 A ball is thrown vertically upwards with an initial speed of 20 m s−1 from a platform 

15 m above the ground. The ball travels to a maximum height and then returns 
to ground level. How long does the ball take to travel from the platform to its 
maximum height and then to the ground?

 A 2.7 s B 4.1 s C 4.7 s D 5.3 s
8 A ball is thrown at an angle to the horizontal of 30° with an initial speed of 45 m s−1. 

What time does the ball take to return to the same horizontal level as its release 
point?

 A 2.3 s B 4.0 s C 4.6 s D 8.0 s

End of topic questions
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9 The variation with time t of the velocity v of two cars P and Q is shown in Fig. 2.30.

0

10

2

15

25

30

5

20

car Qcar Q

car Pcar P

4 6 8 10 12

t/s

v
/m

s–1

▲ Figure 2.30

 The cars travel in the same direction along a straight road. Car P passes car Q at 
time t = 0.
a The speed limit for cars on the road is 100 km h−1. State and explain  

whether car Q exceeds the speed limit. [1]
b Calculate the acceleration of car P. [2]
c Determine the distance between the two cars at time t = 12 s. [3]
d From time t = 12 s, the velocity of each car remains constant at its value  

at t = 12 s. Determine the time t at which car Q passes car P. [2]

Cambridge International AS and A Level Physics (9702) Paper 21 Q2 Oct/Nov 2017

10 a Define speed and velocity and use these definitions to explain why  
one of these quantities is a scalar and the other is a vector. [2]

b A ball is released from rest and falls vertically. The ball hits the ground and 
rebounds vertically, as shown in Fig. 2.31.
The variation with time t of the velocity v of the ball is shown in Fig. 2.32.

 Air resistance is negligible.
i Without calculation, use Fig. 2.32 to describe the variation with time  

t of the velocity of the ball from t = 0 to t = 2.1 s. [3]
ii Calculate the acceleration of the ball after it rebounds from the ground. 

Show your working. [3]

−2.0

0

2.0

4.0

−10.0

−8.0

−6.0

−4.0

6.0

8.0

10.0

12.0

1.0 2.0 3.01.0 2.0 3.0
t/st/s

v
/m

s−
1

▲ Figure 2.32

initial positionball

rebound

ground

▲ Figure 2.31
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2
iii Calculate, for the ball, from t = 0 to t = 2.1 s:

1 the distance moved, [3]
2 the displacement from the initial position. [2]

iv On a copy of Fig. 2.33, sketch the variation with t of the speed of the ball. [2]

−2.0

0

2.0

4.0

−10.0

−8.0

−6.0

−4.0

6.0

8.0

10.0

12.0

sp
ee

d
/m

s−
1

1.0 2.0 3.01.0 2.0 3.0
t/st/s

▲ Figure 2.33

Cambridge International AS and A Level Physics (9702) Paper 21 Q2 May/June 2015

11 a Define:
i velocity, [1]
ii acceleration. [1]

b A car of mass 1500 kg travels along a straight horizontal road.
 The variation with time t of the displacement x of the car is shown in Fig. 2.34.
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▲ Figure 2.34

i Use Fig. 2.34 to describe qualitatively the velocity of the car during the first 
six seconds of the motion shown.

 Give reasons for your answers. [3]
ii Calculate the average velocity during the time interval t = 0 to t = 1.5 s. [1]
iii Show that the average acceleration between t = 1.5 s and t = 4.0 s 

is −7.2 m s−2. [2]
iv Calculate the average force acting on the car between t = 1.5 s and t = 4.0 s.

 [2]

Cambridge International AS and A Level Physics (9702) Paper 23 Oct/Nov 2013 Q3

End of topic questions
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12	 a	 Copy	and	complete	Fig.	2.35	to	indicate	whether	each	of	the	quantities	is	a	

vector	or	a	scalar.		 [2]

quantity vector or scalar
acceleration

speed

power

▲	 Figure	2.35

b	 A	ball	is	projected	with	a	horizontal	velocity	of	1.1	m	s−1	from	point	A	at	the	edge	of	
a	table,	as	shown	in	Fig.	2.36.

path of ball

B

A

1.1 m s–1balltable

horizontal
ground

0.43 m

▲	 Figure	2.36

	 The	ball	lands	on	horizontal	ground	at	point	B	which	is	a	distance	of	0.43	m	from	
the	base	of	the	table.		
Air	resistance	is	negligible.
i	 Calculate	the	time	taken	for	the	ball	to	fall	from	A	to	B.	 [1]
ii	 Use	your	answer	in	b	i	to	determine	the	height	of	the	table.	 [2]
iii	 The	ball	leaves	the	table	at	time	t =	0.
	 For	the	motion	of	the	ball	between	A	and	B,	sketch	graphs	on	copies	of		

Fig.	2.37	to	show	the	variation	with	time	t of
1	 the	acceleration	a of	the	ball,
2	 the	vertical	component	sv	of	the	displacement	of	the	ball	from	A.
	 Numerical	values	are	not	required.	 [2]

t

a

0 t

sv

0

▲	 Figure	2.37

c	 A	ball	of	greater	mass	is	projected	from	the	table	with	the	same	velocity	as	the	
ball	in	b.	Air	resistance	is	still	negligible.	

	 	State	and	explain	the	effect,	if	any,	of	the	increased	mass	on	the	time		
taken	for	the	ball	to	fall	to	the	ground.	 [1]

Cambridge International AS and A Level Physics (9702) Paper 22 Q1 March 2018
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2
13 A ball is thrown from a point P with an initial velocity u of 12 m s−1 at 50° to the 

horizontal, as illustrated in Fig. 2.38.
path of ball

u = 12 m s–1

P
50°

Q

horizontal

▲ Figure 2.38

 The ball reaches maximum height at Q. Air resistance is negligible.
a Calculate:

i the horizontal component of u, [1]
ii the vertical component of u. [1]

b Show that the maximum height reached by the ball is 4.3 m. [2]
c Determine the magnitude of the displacement PQ. [4]

Cambridge International AS and A Level Physics (9702) Paper 21 Q2 May/June 2016

14 a Define:
i displacement, [1]
ii acceleration. [1]

b A remote-controlled toy car moves up a ramp and travels across a gap to land 
on another ramp, as illustrated in Fig. 2.39.

car 5.5 m s�1

q
d

path of car

ramp Qramp P

ground

▲ Figure 2.39

 The car leaves ramp P with a velocity of 5.5 m s−1 at an angle θ to the horizontal. 
The horizontal component of the car’s velocity as it leaves the ramp is 4.6 m s−1. 
The car lands at the top of ramp Q. The tops of both ramps are at the same 
height and are distance d apart. Air resistance is negligible.
i Show that the car leaves ramp P with a vertical component of velocity 

of 3.0 m s−1. [1]
ii Determine the time taken for the car to travel between the ramps. [2]
iii Calculate the horizontal distance d between the tops of the ramps. [1]

c Ramp Q is removed. The car again leaves ramp P as in b and now lands 
directly on the ground. The car leaves ramp P at time t = 0 and lands on the 
ground at time t = T. On a copy of Fig. 2.40, sketch the variation with time t of  
the vertical component vy of the car’s velocity from t = 0 to t = T. Numerical 
values of vy and t are not required. [2]

Cambridge International AS and A Level Physics (9702) Paper 21 Q1a, bi, ii, iii, c Oct/Nov 2018

0
tt

vy

▲ Figure 2.40

End of topic questions
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AS LEVEL

	 3	 Dynamics

3.1 Momentum and Newton’s laws of motion
Relationships involving force and mass
When you push a trolley in a supermarket or pull a case behind you at an airport, you 
are exerting a force. When you hammer in a nail, a force is being exerted. When you 
drop a book and it falls to the floor, the book is falling because of the force of gravity. 
When you lean against a wall or sit on a chair, you are exerting a force. Forces can 

Learning outcomes
By the end of this topic, you will be able to:

3.1 Momentum and Newton’s laws of motion
1  understand that mass is the property of an 

object that resists change in motion
2  recall the relationship F = ma, and solve 

problems using it, understanding that 
acceleration and force are always in the same 
direction

3  define and use linear momentum as the 
product of mass and velocity

4  define and use force as the rate of change of 
momentum

5  state and apply each of Newton’s laws of 
motion

6  describe and use the concept of weight as the 
effect of a gravitational field on a mass and 
recall that the weight of an object is equal to 
the product of its mass and the acceleration 
of free fall

3.2 Non-uniform motion
1  show a qualitative understanding of frictional 

forces and viscous forces/drag including air 
resistance (no treatment of the coefficients 

of friction and viscosity is required, and a 
simple model of drag force increasing as 
speed increases is sufficient)

2  describe and explain qualitatively the motion of 
objects in a uniform gravitational field with air 
resistance

3  understand that objects moving against a 
resistive force may reach a terminal (constant) 
velocity

3.3 Linear momentum and its conservation
1  state the principle of conservation of 

momentum
2  apply the principle of conservation of 

momentum to solve simple problems 
including elastic and inelastic interactions 
between objects in both one and two 
dimensions

3  recall that, for a perfectly elastic collision, 
the relative speed of approach is equal to the  
relative speed of separation

4  understand that, while momentum of a 
system is always conserved in interactions 
between objects, some change in kinetic 
energy may take place

Starting points
★ Motion of an object can be described in terms of displacement, velocity and 

acceleration.
★ A force is required to make an object accelerate.
★ Kinetic energy is the energy stored in an object due to its motion.
★ Energy cannot be created or destroyed. It can only be converted from one 

form to another.
★ A single vector may be resolved into two separate components at right angles 

to each other.
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▲ Figure 3.2 Isaac Newton

change the shape or dimensions of objects. You can crush a drinks can by squeezing it 
and applying a force; you can stretch a rubber band by pulling it. In everyday life, we 
have a good understanding of what is meant by force and the situations in which forces 
are involved. In physics the idea of force is used to add detail to the descriptions of 
moving objects.

As with all physical quantities, a method of measuring force must be established. 
One way of doing this is to make use of the fact that forces can change the dimensions 
of objects in a reproducible way. It takes the same force to stretch a spring by the same 
change in length (provided the spring is not overstretched by applying a very large 
force). This principle is used in the spring balance. A scale shows how much the spring 
has been extended, and the scale can be calibrated in terms of force. Laboratory spring 
balances are often called newton balances, because the newton is the SI unit of force.

Forces are vector quantities: they have magnitude as well as direction. A number of 
forces acting on an object are often shown by means of a force diagram drawn to scale, 
in which the forces are represented by lines of length proportional to the magnitude of 
the force, and in the appropriate direction (see Topic 1.4). The combined effect of several 
forces acting on an object is known as the resultant force.

Force and motion
The Greek philosopher Aristotle believed that the natural state of an object was a state of 
rest, and that a force was necessary to make it move and to keep it moving.  
This argument requires that the greater the force, the greater the speed of the object.

Nearly two thousand years later, Galileo questioned this idea. He suggested that motion 
at a constant speed could be just as natural a state as the state of rest. He introduced an 
understanding of the effect of friction on motion.

Imagine a heavy box being pushed along a rough floor at constant speed (Figure 3.1). 
This may take a considerable force. The force required can be reduced if the floor is 
made smooth and polished, and reduced even more if a lubricant, for example grease, is 
applied between the box and the floor. We can imagine a situation where, when friction 
is reduced to a vanishingly small value, the force required to push the box at constant 
speed is also vanishingly small.

Galileo realised that the force of friction was a force that opposed the pushing force. 
When the box is moving at constant speed, the pushing force is exactly equal to the 
frictional force, but in the opposite direction, so that there is a net force of zero acting 
on the box. In the situation of vanishingly small friction, the box will continue to move 
with constant speed, because there is no force to slow it down.

Newton’s laws of motion
Isaac Newton (1642–1727) used Galileo’s ideas to produce a theory of motion, expressed 
in his three laws of motion. The first law of motion or Newton’s first law re-states 
Galileo’s deduction about the natural state of an object.

Every object continues in its state of rest, or with uniform velocity, unless acted on 
by a resultant force.

This law tells us one of the effects of a force: it disturbs the state of rest or velocity of an 
object. The property of an object to stay in a state of rest or uniform velocity is called 
inertia.

Newton’s second law tells us what happens if a force is exerted on an object. It causes 
the velocity to change. A force exerted on an object at rest makes it move – it gives it a 
velocity. A force exerted on a moving object may make its speed increase or decrease, 
or change its direction of motion. A change in speed or velocity is acceleration. 

▲ Figure 3.1
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Newton’s second law relates the magnitude of this acceleration to the force applied.  
It also introduces the idea of the mass of an object. Mass is a measure of the inertia of 
an object to change in velocity. The bigger the mass, the more difficult it is to change its 
state of rest or velocity. A simplified form of Newton’s second law is

For an object of constant mass, its acceleration is directly proportional to the 
resultant force applied to it.

The direction of the acceleration is in the direction of the resultant force. In a word 
equation the relation between force and acceleration is

force = mass × acceleration

and in symbols

F = ma

where F is the resultant force, m is the mass and a is the acceleration. Here we have 
made the constant of proportionality equal to unity (that is, we use an equals sign rather 
than a proportionality sign) by choosing quantities with units which will give us this 
simple relation. In SI units, the force F is in newtons, the mass m in kilograms and the 
acceleration a in metre (second)−2.

One newton is defined as the force which will give a 1 kg mass an acceleration of 
1 m s−2 in the direction of the force.

When you push a supermarket trolley, the trolley experiences a force (Figure 3.3). 
The trolley applies an equal and opposite force on another object – you. Newton 
understood that the object on which the force is exerted applies another force back on 
the object which is applying the force. When object A applies a force on object B then 
object B applies an equal and opposite force on object A. Newton’s third law relates 
these two forces.

Whenever one object exerts a force on another, the second object exerts an equal 
and opposite force on the first.

This law highlights the very important point that the two forces act on different objects. 
To take the example of the supermarket trolley, the force exerted by you on the trolley is 
equal and opposite to the force exerted by the trolley on you.

Newton’s third law has applications in every branch of everyday life. We walk  
because of this law. When you take a step forward, your foot presses against the  
ground. The ground then exerts an equal and opposite force on you. This is the  
force, on you, which propels you in your path. Space rockets work because of the  
law (Figure 3.4).

To expel the exhaust gases from the rocket, the rocket exerts a force on the gases.  
The gases exert an equal and opposite force on the rocket, accelerating it forward.

▲ Figure 3.3

▲ Figure 3.4 Space rocket 
launch
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WORKED EXAMPLE 3A

1 An object of mass 1.5 kg is to be accelerated at 2.2 m s−2. What force is required?
2 A car of mass 1.5 tonnes (1.5 × 103 kg), travelling at 80 km h−1, is to be stopped  

in 11 s. What force is required?

Answers
1 From Newton’s second law, F = ma = 1.5 × 2.2 = 3.3 N.
2 The acceleration of the car can be obtained from v = u + at (see Topic 2). 

The initial speed u is 80 km h−1, or 22 m s−1. The final speed v is 0.  
Then a = −22/11 = −2.0 m s−2.

 This is negative because the car is decelerating.
 By Newton’s second law, F = ma = 1.5 × 103 × 2.0 = 3.0 × 103 N.

1 A force of 5.0 N is applied to an object of mass 3.0 kg. What is the acceleration of 
the object?

2 A stone of mass 50 g is accelerated from a catapult to a speed of 8.0 m s−1 from rest 
over a distance of 30 cm. What average force is applied by the rubber of the catapult?

Momentum
We shall now introduce a quantity called momentum, and see how Newton’s laws are 
related to it.

The momentum of a particle is defined as the product of its mass and its velocity.

In words

momentum = mass × velocity

and in symbols

p = mv

The unit of momentum is the unit of mass times the unit of velocity; that is, kg m s−1. 
An alternative unit is the newton second (N s). Momentum, like velocity, is a vector 
quantity. Its complete name is linear momentum, to distinguish it from angular 
momentum, which does not concern us here.

As stated above, Newton’s first law states that every object continues in a state of rest, 
or with uniform velocity, unless acted on by a resultant force. We can express this law 
in terms of momentum. If an object maintains its uniform velocity, its momentum is 
unchanged. If an object remains at rest, again its momentum (zero) does not change. 
Thus, an alternative statement of the first law is that the momentum of a particle 
remains constant unless an external resultant force acts on the particle. As an equation

p = constant (provided the external resultant force is zero)

This is a special case, for a single particle, of a very important conservation law: the 
principle of conservation of momentum. This word ‘conservation’ here means that the 
quantity remains constant.

Questions
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We already have Newton’s second law in a form which relates the force acting on an 
object to the product of the mass and the acceleration of the object. Newton’s second 
law can also be expressed in terms of momentum. Remember that the acceleration of 
an object is the rate of change of its velocity. The product of mass and acceleration then 
is just the mass times the rate of change of velocity. For an object of constant mass, 
this is just the same as the rate of change of (mass × velocity). But (mass × velocity) is 
momentum, so the product of mass and acceleration is identical to the rate of change of 
momentum. Thus, Newton’s second law is stated as

The resultant force acting on an object is proportional to the rate of change of its 
momentum.

The constant of proportionality is made equal to unity as described earlier, by the 
definition of the newton. Hence the second law used in problem solving is

The resultant force acting on an object is equal to the rate of change of momentum.

Expressed in terms of symbols

F = Δp/Δt

for constant mass m

F = Δ(mv)/Δt = m (Δv/Δt) = ma

Note that F represents the resultant force acting on the object.

Continuing with the idea of force being equal to rate of change of momentum, the 
third law becomes: the rate of change of momentum due to the force on one object is 
equal and opposite to the rate of change of momentum due to the force on the other 
object. The two forces act on each object for the same time (Δt). Hence FΔt is equal for 
each object. Therefore, when two objects exert forces on each other, their changes of 
momentum are equal and opposite.

Weight
We saw in Topic 2 that all objects released near the surface of the Earth fall with 
the same, constant acceleration (the acceleration of free fall) if air resistance can be 
neglected. The force causing this acceleration is the gravitational attraction of the 
Earth on the object, or the force of gravity. The force of gravity which acts on an 
object is called the weight of the object. We can apply Newton’s second law to the 
weight. For an object of mass m falling with the acceleration of free fall g, the weight 
W is given by

W = mg

The SI unit of force is the newton (N). This is also the unit of weight. The weight of 
an object is obtained by multiplying its mass in kilograms by the acceleration of free 
fall, 9.81 m s−2. Thus a mass of one kilogram has a weight of 9.81 N. Because weight is 
a force and force is a vector, we ought to be aware of the direction of the weight of an 
object. It is towards the centre of the Earth. Because weight always has this direction, 
we do not need to specify direction every time we give the magnitude of the weight 
of objects.
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How do we measure mass and weight? If you hang an object from a newton balance, you 
are measuring its weight (Figure 3.5). The unknown weight of the object is balanced 
by a force provided by the spring in the balance. From a previous calibration, this 
force is related to the extension of the spring. There is the possibility of confusion 
here. Laboratory newton balances may, indeed, be calibrated in newtons. But all 
commercial spring balances – for example, the balances at fruit and vegetable counters 
in supermarkets – are calibrated in kilograms. Such balances are really measuring the 
weight of the fruit and vegetables, but the scale reading is in mass units, because there is 
no distinction between mass and weight in everyday life. The average shopper thinks of 
5 kg of mangoes as having a weight of 5 kg. In fact, the mass of 5 kg has a weight of 49 N.

▲ Figure 3.6 Top-pan balance

The word ‘balance’ in the spring balance and in the laboratory top-pan balance (see 
Figure 3.6) relates to the balance of forces. In each case, the unknown force (the weight) 
is equalled by a force which is known through the previous calibration of the balance.

▲ Figure 3.7 Lever balance

A way of comparing masses is to use a beam balance, or lever balance (see Figure 3.7). 
Here the weight of the object is balanced against the weight of some masses, which 
have previously been calibrated in mass units. The word ‘balance’ here refers to the 
equilibrium of the beam: when the beam is horizontal, the moment of the weight on 
one side of the pivot is equal and opposite to the moment on the other side of the pivot. 
Because weight is given by the product of mass and the acceleration of free fall, the 
equality of the weights means that the masses are also equal.

We have introduced the idea of weight by thinking about an object in free fall. But 
objects at rest also have weight: the gravitational attraction on a book is the same 
whether it is falling or whether it is resting on a table. The fact that the book is at rest 

▲ Figure 3.5 Newton 
balance
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tells us, by Newton’s first law, that the resultant force acting on it is zero. So there must 
be another force acting on the book which exactly balances its weight. In Figure 3.8 
the table exerts an upwards force on the book. This force is equal in magnitude to the 
weight but opposite in direction. It is a normal contact force: ‘contact’ because it occurs 
due to the contact between book and table, and ‘normal’ because it acts perpendicularly 
to the plane of contact.

normal contact force R

weight of book W

▲ Figure 3.8 A book resting on a table: forces on the book. (The forces act in the same 
vertical line, but are separated slightly for clarity.)

The book remains at rest on the table because the weight W of the book downwards 
is exactly balanced by the normal contact force R exerted by the table on the book. 
The vector sum of these forces is zero, so the book is in equilibrium. A very common 
mistake is to state that ‘By Newton’s third law, W is equal to R′. But these two forces are 
both acting on the book, and cannot be related by the third law. Third-law forces always 
act on different bodies.

To see the application of the third law, think about the normal contact force R. This is an 
upwards force exerted by the table on the book. There is a downwards force R' exerted 
by the book on the table. By Newton’s third law, these forces are equal and opposite.  
This situation is illustrated in Figure 3.9.

R

R′

▲ Figure 3.9 A book resting on a table: R and R′ act on different objects and are equal and 
opposite.

Having considered the forces acting between book and table, we should consider the 
force that is equal and opposite to the weight of the book, even when the book is not on 
the table. This is not easy, because there does not seem to be an obvious second force. 
But remember that the weight is due to the gravitational attraction of the Earth on the 
book. If the Earth attracts the book, the book also attracts the Earth. This gravitational 
force of the book on the Earth is the second force. We can test whether the two forces 
do, indeed, act on different objects. The weight of the book acts on the book and the 
second force (the attraction of the Earth to the book) acts on the Earth. Thus, the 
condition that the two forces act on different objects is satisfied.

3.2 Non-uniform motion
As noted at the start of Topic 3.1, frictional forces are important in considering the motion 
of an object. A friction force acts along the common surface of contact between two objects. 
A frictional force always acts in the opposite direction to the relative motion of the 
objects. The frictional force is larger for rough surfaces and zero for smooth surfaces.  
In Figure 3.10 the pulling force P and the frictional force F are in opposite directions. If P is 
greater than F then the book accelerates. If P equals F the book travels at constant velocity.
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normal contact force

weight of book

pulling
force Pfrictional

force F

▲ Figure 3.10 A book being pulled on a table

We use the term viscous force (or drag force) to describe the frictional force in a fluid (a 
liquid or a gas). The property of the fluid determining this force is the viscosity of the fluid. 
The frictional force is low for fluids with low viscosity such as water. The frictional force is 
large for fluids with high viscosity such as glue. An example of such a force is air resistance.

We mentioned in Topic 2 that, in most situations, air resistance for objects in free fall 
can be neglected. In fact, there are some applications in which the size of this force 
becomes important.

The velocity of an object moving through a resistive fluid (a liquid or a gas) does not 
increase indefinitely, but eventually reaches a maximum velocity, called the terminal 
velocity. The drag force due to air resistance is zero when an object’s velocity is zero and 
increases with speed.

For an object falling in a viscous fluid the resultant downward force (weight − viscous 
force) decreases as the viscous force increases. When the resistive force has reached 
a value equal and opposite to the weight of the falling object the resultant force 
downwards is zero so the object no longer accelerates but continues at uniform velocity. 
This is a case of motion with non-uniform acceleration. The acceleration is initially equal 
to g, but decreases to zero at the time when the terminal velocity is achieved. Thus, 
raindrops and parachutists are normally travelling at a constant speed by the time they 
approach the ground (Figure 3.11).

An object released from rest at a considerable height above the Earth’s surface at 
first increases in velocity as it accelerates due to gravity, but soon reaches a terminal 
(constant) velocity. Figure 3.12 shows the variation of the velocity v with time t for the 
object until its terminal velocity is reached.

The examples of objects falling through air in the Earth’s gravitational field are assumed 
to fall through a uniform gravitational field where the value of g is constant. The weight 
of the object remains constant in these situations.

When an object is immersed in a fluid, it experiences an upward force due to the 
pressure of the fluid on it (see Topic 4.3). We call this an upthrust or buoyancy force.as 
we shall see in Topic 4, the upthrust force depends on the density of the fluid.  
The density of air is very small and, therefore, the effect of the upthrust force on  
an object in air is considered to be negligible.

In fluids such as oil and glycerine the upthrust force is not negligible. An object falling 
through such a fluid experiences the forces shown in Figure 3.13. The viscous force 
increases with the velocity of the object. The resultant downward force equals weight − 
(upthrust + viscous force).

The object reaches terminal velocity when the upthrust and the viscous force equals its 
weight.

weight = upthrust + viscous force

and causes the object to accelerate until the upthrust and the viscous force equals its 
weight. The object then continues to fall at its terminal velocity.

▲ Figure 3.11 A parachutist 
about to land

viscous force
+ upthrust

weight
fluid

velocity of
object falling

object

▲ Figure 3.13 Forces on an 
object falling in a fluid

terminal velocity

0 t

v

▲ Figure 3.12 Motion of an 
object falling in air
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Problem solving
In dealing with problems involving Newton’s laws, start by drawing a general 
sketch of the situation. Then consider each object in your sketch. Show all the forces 
acting on that object, both known forces and unknown forces you may be trying to 
find. Here it is a real help to try to draw the arrows which represent the forces in 
approximately the correct direction and approximately to scale. Label each force with 
its magnitude or with a symbol if you do not know the magnitude. For each force, 
you must know the cause of the force (gravity, friction, and so on), and you must also 
know on what object that force acts and by what object it is exerted. This labelled 
diagram is referred to as a free-body diagram, because it detaches the object from the 
others in the situation. Having established all the forces acting on the object, you can 
use Newton’s second law to find unknown quantities. This procedure is illustrated in 
the example below.

Newton’s second law equates the resultant force acting on an object to the product of 
its mass and its acceleration. In some problems, the system of objects is in equilibrium. 
They are at rest, or are moving in a straight line with uniform speed. In this case, the 
acceleration is zero, so the resultant force is also zero. In other cases, the resultant force 
is not zero and the objects in the system are accelerating.

Whichever case applies, you should remember that forces are vectors. You will probably 
have to resolve the forces into two components at right angles (see Topic 1.4), and 
then apply the second law to each set of components separately. Problems can often be 
simplified by making a good choice of directions for resolution. You will end up with a 
set of equations, based on the application of Newton’s second law, which must be solved 
to determine the unknown quantity.

WORKED EXAMPLE 3B

1 A box of mass 5.0 kg is pulled along a horizontal floor by a force P of 25 N, 
applied at an angle of 20° to the horizontal (Figure 3.14). A frictional force F of 
20 N acts parallel to the floor.

 Calculate the acceleration of the box.

P R

F

W

20°

▲ Figure 3.14

2 What is the magnitude of the momentum of an α-particle of mass 6.6 × 10−27 kg 
travelling with a speed of 2.0 × 107 m s−1?

Answers
1 The free-body diagram is shown in Figure 3.14. Resolving the forces parallel to the 

floor, the component of the pulling force, acting to the left, is 25 cos 20° = 23.5 N.
 The frictional force, acting to the right, is 20 N.
 The resultant force to the left is thus 23.5 − 20.0 = 3.5 N.
 From Newton’s second law, a = F/m = 3.5/5.0 = 0.70 m s−2.
2 p = mv = 6.6 × 10−27 × 2.0 × 107 = 1.3 × 10−19 kg m s−1
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40°

F

P

▲ Figure 3.15

3 A person gardening pushes a lawnmower of mass 18 kg at constant speed. To do this 
requires a force P of 80 N directed along the handle, which is at an angle of 40° to the 
horizontal (Figure 3.15).

a Calculate the horizontal frictional force F on the mower.

b If this frictional force were constant, what force, applied along the handle, would 
accelerate the mower from rest to 1.2 m s−1 in 2.0 s?

4 What is the magnitude of the momentum of an electron of mass 9.1 × 10−31 kg 
travelling with a speed of 7.5 × 106 m s−1?

5 Explain the changes in the resultant force acting on an object as it moves through 
a fluid

a as the object falls vertically downwards and

b moves vertically upwards in a fluid.

3.3 Linear momentum and its conservation
We have already seen that Newton’s first law states that the momentum of a single 
particle is constant, if no external resultant force acts on the particle. Now think about 
a system of two particles (Figure 3.16). We allow these particles to exert some sort of 
force on each other: it could be gravitational attraction or, if the particles were charged, 
it could be electrostatic attraction or repulsion.

These two particles are isolated from the rest of the Universe, and experience no 
outside forces at all. If the first particle exerts a force F on the second, Newton’s third 
law tells us that the second exerts a force −F on the first. The minus sign indicates 
that the forces are in opposite directions. As we saw in the last section, we can express 
this law in terms of change of momentum. The change of momentum of the second 
particle as a result of the force exerted on it by the first is equal and opposite to the 
change of momentum of the first particle as a result of the force exerted on it by the 
second. Thus, the changes of momentum of the individual particles cancel out, and the 
momentum of the system of two particles remains constant. The particles have merely 
exchanged some momentum.

The situation is expressed by the equation

p = p1 + p2 = constant

where p is the total momentum, and p1 and p2 are the individual momenta.

We could extend this idea to a system of three, four or indeed any number n of particles.

If no external resultant force acts on a system, the total momentum of the system 
remains constant, or is conserved.

F F

▲ Figure 3.16 System of 
two particles

Questions
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A system on which no external resultant force acts is often called an isolated system. 
The fact that the total momentum of an isolated system is constant is the principle of 
conservation of momentum. It is a direct consequence of Newton’s third law of motion.

Collisions
We now use the principle of conservation of momentum to analyse a system 
consisting of two colliding particles. (If you want a real example to think about, try 
snooker balls.)

Consider two particles A and B making a direct, head-on collision. Particle A has 
mass m1 and is moving with velocity u1 in the direction from left to right; B has mass 
m2 and has velocity u2 in the direction from right to left (Figure 3.17). As velocity is 
a vector quantity, this is the same as saying that the velocity is −u2 from left to right. 
The particles collide. After the collision they have velocities −v1 and v2 respectively 
in the direction from left to right. That is, both particles are moving back along their 
directions of approach.

According to the principle of conservation of momentum, the total momentum of this 
isolated system remains constant, whatever happens as a result of the interaction of 
the particles. Thus, the total momentum before the collision must be equal to the total 
momentum after the collision. The momentum before the collision is

m1u1 − m2u2

and the momentum after is

−m1v1 + m2v2

Because total momentum is conserved

m1u1 − m2u2 = −m1v1 + m2v2

Knowing the masses of the particles and the velocities before collision, this equation 
would allow us to calculate the relation between the velocities after the collision.

The way to approach collision problems is as follows.

» Draw a labelled diagram showing the colliding particles before collision. Draw a 
separate diagram showing the situation after the collision. Take care to define the 
directions of all the velocities.

» Obtain an expression for the total momentum before the collision, remembering 
that momentum is a vector quantity. Similarly, find the total momentum after the 
collision, taking the same reference direction.

» Then equate the momentum before the collision to the momentum afterwards.

A B

A

u1 u2

v1 v2

B

before:

after:

▲ Figure 3.17 Collision 
between two particles

WORKED EXAMPLE 3C

A cannon of mass 1.5 tonnes (1.5 × 103 kg) fires a 
cannon-ball of mass 5.0 kg (Figure 3.18).

The speed with which the ball leaves the cannon is 
70 m s−1 relative to the Earth. What is the initial speed 
of recoil of the cannon?

▲ Figure 3.18

Answer
The system under consideration is the cannon and 
the cannon-ball. The total momentum of the system 
before firing is zero. Because the total momentum of 
an isolated system is constant, the total momentum 
after firing must also be zero. That is, the momentum 
of the cannon-ball, which is 5.0 × 70 = 350 kg m s−1 to 
the right, must be exactly balanced by the momentum 
of the cannon. If the initial speed of recoil is v, the 
momentum of the cannon is 1500v to the left.

Thus, 1500v = 350 and v = 0.23 m s−1.
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6 An ice-skater of mass 80 kg, initially at rest, pushes his partner, of mass 65 kg, away 

from him so that she moves with an initial speed of 1.5 m s−1. What is the initial 
speed of the first skater after this manoeuvre?

Momentum and impulse
It is now useful to introduce a quantity called impulse and relate it to a change in 
momentum.

If a constant force F acts on an object for a time Δt, the impulse of the force is given 
by FΔt.

The unit of impulse is given by the unit of force, the newton, multiplied by the unit of 
time, the second: it is the newton second (N s).

We know from Newton’s second law that the force acting on an object is equal to the rate 
of change of momentum of the object. We have already expressed this as the equation

F = Δp/Δt

If we multiply both sides of this equation by Δt, we obtain

FΔt = Δp

We have already defined FΔt as the impulse of the force. The right-hand side of the 
equation (Δp) is the change in the momentum of the object. So, Newton’s second law 
tells us that the impulse of a force is equal to the change in momentum.

It is useful for dealing with forces that act over a short interval of time, as in a collision. 
The forces between colliding objects are seldom constant throughout the collision, but 
the equation can be applied to obtain information about the average force acting.

Note that the idea of impulse explains why there is an alternative unit for momentum. 
In the section on momentum we introduced the kg m s−1 and the N s as possible 
units for momentum. The kg m s−1 is the logical unit, the one you arrive at if you take 
momentum as being the product of mass and velocity. The N s comes from the impulse–
momentum equation: it is the unit of impulse, and because impulse is equal to change 
of momentum, it is also a unit for momentum.

WORKED EXAMPLE 3D

Some tennis players can serve the ball at a speed of  
55 m s−1. The tennis ball has a mass of 60 g. In an  
experiment, it is determined that the ball is in contact  
with the racket for 25 ms during the serve (Figure 3.19). 
Calculate the average force exerted by the racket  
on the ball.

Answer
The change in momentum of the ball as a result of  
the serve is 0.060 × 55 = 3.3 kg m s−1. By the  
impulse–momentum equation, the change in  
momentum is equal to the impulse of the force.  
Since impulse is the product of force and time,  
Ft = 3.3 N s.

Here t is 0.025 s; thus F = 3.3/0.025 = 130 N. ▲ Figure 3.19

Question
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7 A golfer hits a ball of mass 45 g at a speed of 40 m s−1 (Figure 3.20). The golf club is 

in contact with the ball for 3.0 ms. Calculate the average force exerted by the club on 
the ball.

▲ Figure 3.20

Elastic and inelastic collisions
In some collisions, kinetic energy is conserved as well as momentum. By the 
conservation of kinetic energy, we mean that the total kinetic energy of the colliding 
particles before collision is the same as the total kinetic energy afterwards. This means 
that no energy is lost in the permanent deformation of the colliding particles, or as 
heat and sound. There is a transformation of energy during the collision: while the 
colliding particles are in contact, some of the kinetic energy is transformed into elastic 
potential energy, but as the particles separate, it is transformed into kinetic  
energy again.

Using the same notation for the masses and speeds of the colliding particles as in the 
section on Collisions (see Figure 3.21), the total kinetic energy of the particles before 
collision is

1
2 m1u1

2 + 12 m2u2
2

The total kinetic energy afterwards is
1
2 m1v1

2 + 12 m2v2
2

If the collision is elastic, the total kinetic energy before collision is equal to the 
total kinetic energy after collision.

1
2 m1u1

2 + 12 m2u2
2 = 12 m1v1

2 + 12 m2v2
2

Note that because energy is a scalar, the directions of motion of the particles are not 
indicated by the signs of the various terms.

In solving problems about elastic collisions, this equation is useful because it gives 
another relation between masses and velocities, in addition to that obtained from the 
principle of conservation of momentum.

When the velocity directions are as defined in Figure 3.21, application of the two 
conservation conditions shows that

u1 + u2 = v1 + v2

for a perfectly elastic collision.

A B

A

u1 u2

v1 v2

B

before:

after:

▲ Figure 3.21 Collision 
between two particles

Question
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That is, the relative speed of approach (u1 + u2) is equal to the relative speed of 
separation (v1 + v2). Note that this useful relation applies only for a perfectly elastic 
collision.

Elastic collisions occur in the collisions of atoms and molecules. We shall see in 
Topic 15.3 that one of the most important assumptions in the kinetic theory of gases 
is that the collisions of the gas molecules with the walls of the container are perfectly 
elastic. However, in larger-scale collisions, such as those of snooker balls, collisions 
cannot be perfectly elastic. (The ‘click’ of snooker balls on impact indicates that a very 
small fraction of the total energy of the system has been transformed into sound.)

Nevertheless, we often make the assumption that such a collision is perfectly elastic.

Collisions in which the total kinetic energy is not the same before and after the 
event are called inelastic.

Total energy must, of course, be conserved. But in an inelastic collision the kinetic 
energy that does not re-appear in the same form is transformed into heat, sound and 
other forms of energy. In an extreme case, all the kinetic energy may be lost. A lump 
of modelling clay dropped on to the floor does not bounce. All the kinetic energy it 
possessed just before hitting the floor has been transformed into the work done in 
flattening the lump, and (a much smaller amount) into the sound emitted as a ‘squelch’.

Although kinetic energy may or may not be conserved in a collision, momentum is 
always conserved, and so is total energy.

The truth of this statement may not be entirely obvious, especially when considering 
examples such as the lump of modelling clay which was dropped on to the floor. Surely 
the clay had momentum just before the collision with the floor, but had no momentum 
afterwards? True! But for the system of the lump of clay alone, external forces (the 
attraction of the Earth on the clay, and the force exerted by the floor on the clay on 
impact) were acting. When external forces act, the conservation principle does not apply. 
We need to consider a system in which no external forces act. Such a system is the lump 
of modelling clay and the Earth. While the clay falls towards the floor, gravitational 
attraction will also pull the Earth towards the clay. Conservation of momentum can be 
applied in that the total momentum of clay and Earth remains constant throughout the 
process: before the collision, and after it. The effects of the transfer of the clay’s momentum 
to the Earth are not noticeable due to the difference in mass of the two objects.

WORKED EXAMPLE 3E

1 A snooker ball A moves with speed uA directly towards a similar ball B which is at 
rest (Figure 3.22). The collision is elastic. What are the speeds vA and vB after the 
collision?

A

uA

vA vB

before:

after:

B

A B

▲ Figure 3.22
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8 A trolley A moves with speed uA towards a trolley B of equal mass which is at rest 
(Figure 3.24).

 The trolleys stick together and move off as one with speed vA,B.

a Determine vA,B.

b What fraction of the initial kinetic energy of trolley A is converted into other 
forms in this inelastic collision?

BA

before:

after:

BA

uA

vA,B

▲ Figure 3.24

2 A particle of mass m makes a glancing collision with a similar particle, also of 
mass m, which is at rest (Figure 3.23). The collision is elastic. After the collision 
the particles move off at angles  and β. State the equations that relate:
a the x components of the momentum of the particles
b the y components of the momentum of the particles
c the kinetic energy of the particles.

m

u
x

y

v1

v2

m

f
b

▲ Figure 3.23

Answers
1 It is convenient to take the direction from left to right as the direction of positive 

momentum. If the mass of a billiard ball is m, the total momentum of the system 
before the collision is muA. By the principle of conservation of momentum, the 
total momentum after collision is the same as that before, or

 muA = mvA + mvB
 The collision is perfectly elastic, so the total kinetic energy before the collision is 

the same as that afterwards, or

 1
2
muA

2 = 1
2
mvA

2 + 1
2
mvB

2

 Solving these equations gives vA = 0 and vB = uA. That is, ball A comes to a 
complete standstill, and ball B moves off with the same speed as that with which 
ball A struck it. (Another solution is possible algebraically: vA = uA and vB = 0. 
This corresponds to a non-collision. Ball A is still moving with its initial speed, 
and ball B is still at rest. In cases where algebra gives us two possible solutions, 
we need to decide which one is physically appropriate.)

2 From the conservation of momentum:
a mu = mv1 cos  + mv2 cos β
b 0 = mv1 sin  − mv2 sin β
c total kinetic energy is constant as the collision is elastic.  

Hence, 1
2
mu2 = 1

2
mv1

2 + 1
2
mv2

2

Question
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End of topic questions

SUMMARY

» The mass of an object is the property of an object 
that resists change in motion.

» The linear momentum p of an object is defined as 
the product of its mass m and its velocity v.  
In symbols: p = mv. Momentum has units kg m s−1 or 
N s. It is a vector quantity.

» Newton’s laws of motion are:
– First law: Every object continues in its state 

of rest, or with uniform velocity, unless acted 
upon by a resultant force.

– Second law: The resultant force acting on an 
object is proportional to the rate of change of 
its momentum (this is used to define force). 
In symbols: F ∝ Δp/Δt.

 If SI units are used F = Δp/Δt.
– Third law: When one object exerts a force on 

another object, the second object exerts an 
equal and opposite force on the first object.

» Newton’s first and third laws of motion can also be 
stated in terms of momentum:
– First law: The momentum of an object remains 

constant unless a resultant external force acts 
on the object: p = constant

– Third law: When two objects collide, their 
changes in momentum are equal and opposite.

» If the mass is constant, the resultant force is 
equal to mass × acceleration or F = ma, where 
force F is in newtons, mass m is in kilograms and 
acceleration a is in m s−2.

» The acceleration of free fall g provides the link 
between the mass m and the weight W of an object: 
W = mg

» A frictional force always acts in the opposite 
direction to the relative motion of the objects.

» The term viscous force is used to describe the 
frictional force in a fluid (a liquid or a gas).

» As an object falls in a uniform gravitational field 
the air resistance increases with the speed of the 
object until the resultant force is zero. The object 
then moves with terminal (constant) velocity.

» The principle of conservation of momentum states 
that the total momentum of an isolated system is 
constant. An isolated system is one on which no 
external resultant force acts.

» In collisions between objects, application of the 
principle of conservation of momentum shows 
that the total momentum of the system before the 
collision is equal to the total momentum after the 
collision.

» An elastic collision is one in which the total kinetic 
energy remains constant. In this situation, the 
relative speed of approach is equal to the relative 
speed of separation.

» An inelastic collision is one in which the total 
kinetic energy is not the same before and after the 
event.

» Although kinetic energy may or may not be 
conserved in a collision, momentum is always 
conserved, and so is total energy.

» The impulse of a force F is the product of the force 
and the time Δt for which it acts:

 impulse = FΔt
 The impulse of a force acting on an object is equal 

to the change of momentum of the object: FΔt = Δp.
 The unit of impulse is N s.

END OF TOPIC QUESTIONS

 1 A net force of 95 N accelerates an object at 1.9 m s−2.

 Calculate the mass of the object.

 2 A parachute trainee jumps from a platform 3.0 m high. When he reaches the 
ground, he bends his knees to cushion the fall. His torso decelerates over a 
distance of 0.65 m. Calculate:

a the speed of the trainee just before he reaches the ground,

b the deceleration of his torso,

c the average force exerted on his torso (of mass 45 kg) by his legs during the 
deceleration.

 3 If the acceleration of an object is zero, does this mean that no forces act on it?

 4 A railway engine pulls two carriages of equal mass with uniform acceleration.  
The tension in the coupling between the engine and the first carriage is T.  
Deduce the tension in the coupling between the first and second carriages.

 5 Calculate the magnitude of the momentum of a car of mass 1.5 tonnes (1.5 × 103 kg) 
travelling at a speed of 22 m s−1.
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 6 When a certain space rocket is taking off, the propellant gases are expelled at a 

rate of 900 kg s−1 and speed of 40 km s−1. Calculate the thrust on the rocket.

 7 An insect of mass 4.5 mg, flying with a speed of 0.12 m s−1, encounters a spider’s 
web, which brings it to rest in 2.0 ms. Calculate the average force exerted by the 
insect on the web.

 8 What is your mass? What is your weight?

 9 An atomic nucleus at rest emits an α-particle of mass 4 u. The speed of the 
α-particle is found to be 5.6 × 106 m s−1.

 Calculate the speed with which the daughter nucleus, of mass 218 u, recoils.

10 A heavy particle of mass m1, moving with speed u, makes a head-on collision with a 
light particle of mass m2, which is initially at rest. The collision is perfectly elastic, 
and m2 is very much less than m1. Describe the motion of the particles after the 
collision.

11 A light object and a heavy object have the same momentum.

  Which has the greater kinetic energy?

12 A resultant force 30 N acts on an initially stationary mass of 10 kg for 4.0 s. How far 
does the mass move?

 A 6.0 m     B 12 m     C 24 m     D 48 m

13 A mass of 0.50 kg falls vertically and collides with the ground at a speed of 
5.0 m s−1. The mass rebounds vertically with a speed of 3.0 m s−1. The mass is in 
contact with the ground for 20 ms. What is the magnitude of the force acting on the 
mass as it makes contact with the ground?

 A  50 N     B 75 N     C 130 N      D 200 N

14 A book rests on a horizontal table. A metal block rests on the top of the book as 
shown in Fig. 3.25. Newton’s third law describes how forces exist in pairs.  
One such pair of forces is the weight of the book and another force Y. What is the 
name of the body on which force Y acts?

 A book       B Earth       C ground       D metal block

15 A 45 g ball with speed of 12 m s−1 hits a wall at an angle of 30° (see Fig. 3.26).  
The ball rebounds with the same speed and angle. The contact time of the ball with 
the wall is 15 ms. Calculate:
a the change in momentum of the ball,
b the impulse of the ball,
c the force exerted on the ball by the wall.

16 A bullet of mass 12 g is fired horizontally from a gun with a velocity of 180 m s−1.  
It hits, and becomes embedded in, a block of wood of mass 2000 g, which is freely 
suspended by long strings, as shown in Fig. 3.27.

▲ Figure 3.27

ball

wall
30° 30°

12 m s–1

12 m s–1

▲ Figure 3.26

table

book

metal block

▲ Figure 3.25
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3
 Calculate:

a i the magnitude of the momentum of the bullet just before it enters the 
block,

ii the magnitude of the initial velocity of the block and bullet after impact,
iii the kinetic energy of the block and embedded bullet immediately after the 

impact.
b Deduce the maximum height above the equilibrium position to which the block 

and embedded bullet rise after impact.

17 A nucleus A of mass 222 u is moving at a speed of 350 m s−1. While moving, it 
emits an α-particle of mass 4 u. After the emission, it is determined that the 
daughter nucleus, of mass 218 u, is moving with speed 300 m s−1 in the original 
direction of the parent nucleus. Calculate the speed of the α-particle.

18 A safety feature of modern cars is the air-bag, which, in the event of a collision, 
inflates and is intended to decrease the risk of serious injury. Use the concept of 
impulse to explain why an air-bag might have this effect.

19 Two frictionless trolleys A and B, of mass m and 3m respectively, are on a 
horizontal track (Fig. 3.28). Initially they are clipped together by a device which 
incorporates a spring, compressed between the trolleys. At time t = 0 the clip is 
released. The velocity of trolley B is u to the right.

A B

▲ Figure 3.28

a Calculate the velocity of trolley A as the trolleys move apart.
b At time t = t1, trolley A collides elastically with a fixed spring and rebounds. 

(Compression and expansion of the spring take a negligibly short time.)  
Trolley A catches up with trolley B at time t = t2.
i Calculate the velocity of trolley A between t = t1 and t = t2.
ii Find an expression for t2 in terms of t1.

c When trolley A catches up with trolley B at time t2 the clip operates so as to 
link them again, this time without the spring between them, so that they move 
together with velocity v.

 Calculate the common velocity v in terms of u.
d Initially the trolleys were at rest and the total momentum of the system was 

zero. However, the answer to c shows that the total momentum after t = t2 is 
not zero. Discuss this result with reference to the principle of conservation of 
momentum.

20 A ball of mass m makes a perfectly elastic head-on collision with a second ball, of 
mass M, initially at rest. The second ball moves off with half the original speed of 
the first ball.
a Express M in terms of m.
b  Determine the fraction of the original kinetic energy retained by the ball of 

mass m after the collision.

End of topic questions
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21 Two balls X and Y are supported by long strings, as shown in Fig. 3.29.

2.8 m s−14.5 m s−1

X Y

▲ Figure 3.29

 The balls are each pulled back and pushed towards each other. When the balls 
collide at the position shown in Fig. 3.29, the strings are vertical. The balls 
rebound in opposite directions. Fig. 3.30 shows data for X and Y during this 
collision.

ball mass velocity just before 
collision/m s−1

velocity just after 
collision/m s−1

X 50 g +4.5 −1.8

Y M −2.8 +1.4

▲ Figure 3.30

  The positive direction is horizontal and to the right.
a Use the conversation of linear momentum to determine the mass M of Y. [3]
b State and explain whether the collision is elastic. [1]
c Use Newton’s second and third laws to explain why the magnitude of the 

change in momentum of each ball is the same. [3]

Cambridge International AS and A Level Physics (9702) Paper 21 Q3 May/June 2015

22 A steel ball falls from a platform on a tower to the ground below, as shown in Fig. 3.31.

192 m

ground

tower

platform

path
of ball

ball

▲ Figure 3.31

 The ball falls from rest through a vertical distance of 192 m. The mass of the ball  
is 270 g.
a Assume air resistance is negligible.

i Calculate:
1  the time taken for the ball to fall to the ground, [2]
2  the maximum kinetic energy of the ball. [2]

ii State and explain the variation of the velocity of the ball with time as  
the ball falls to the ground. [1]

iii Show that the velocity of the ball on reaching the ground is approximately 
60 m s−1. [1]
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3
b In practice, air resistance is not negligible. The variation of the air resistance R 

with the velocity v of the ball is shown in Fig. 3.32.

0

2.0

20

3.0

1.0

4.0

40 60 80 100

v /m s−1
R

/N

▲ Figure 3.32

i Use Fig. 3.32 to state and explain qualitatively the variation of the 
acceleration of the ball with the distance fallen by the ball. [3]

ii The speed of the ball reaches 40 m s−1. Calculate its acceleration at 
this speed. [2]

iii Use information from a iii and Fig. 3.32 to state and explain whether  
the ball reaches terminal velocity. [2]

Cambridge International AS and A Level Physics (9702) Paper 23 Q3 Oct/Nov 2015

23 a State Newton’s second law of motion. [1]
b A constant resultant force F acts on an object A. The variation with time t of the 

velocity v for the motion of A is shown in Fig. 3.33.

0

6.0

1.0

7.0

8.0

9.0

5.0

4.0
2.0 3.0 4.0

t/s

v
/m

s−
1

▲ Figure 3.33

 The mass of A is 840 g. Calculate, for the time t = 0 to t = 4.0 s:
i the change in momentum of A, [2]
ii the force F. [1]

c The force F is removed at t = 4.0 s. Object A continues at constant velocity before 
colliding with an object B, as illustrated in Fig. 3.34.

 Object B is initially at rest. The mass of B is 730 g. The objects A and B join 
together and have a velocity of 4.7 m s−1.
i By calculation, show that the changes in momentum of A and of B during the 

collision are equal and opposite. [2]
ii Explain how the answers obtained in i support Newton’s third law. [2]
iii By reference to the speeds of A and B, explain whether the collision is 

elastic. [1]

Cambridge International AS and A Level Physics (9702) Paper 23 Q2 May/June 2017

A

840 g

B

730 g at rest

▲ Figure 3.34

End of topic questions
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24 A wooden block moves along a horizontal frictionless surface, as shown in  

Fig. 3.35.

horizontal
surface

block
mass 85 g

45 m s−1 2.0 m s−1

steel ball
mass 4.0g

▲ Figure 3.35

 The block has mass 85 g and moves to the left with a velocity of 2.0 m s−1. A steel 
ball of mass 4.0 g is fired to the right. The steel ball, moving horizontally with a 
speed of 45 m s−1, collides with the block and remains embedded in it. After the 
collision the block and steel ball both have speed v.
a Calculate v. [2]
b i For the block and ball, state:

1  the relative speed of approach before collision,
2  the relative speed of separation after collision. [1]

 ii Use your answers in i to state and explain whether the collision  
is elastic or inelastic. [1]

c Use Newton’s third law to explain the relationship between the rate of change 
of momentum of the ball and the rate of change of momentum of the block 
during the collision. [2]

Cambridge International AS and A Level Physics (9702) Paper 21 Q2 Oct/Nov 2018

25 Two balls, X and Y, move along a horizontal frictionless surface, as illustrated in 
Fig. 3.36.

2.5 kg

60°

A B
X

Y

9.6 m s−1

3.0 m s−1

▲ Figure 3.36

 Ball X has an initial velocity of 3.0 m s−1 in a direction along line AB. Ball Y has a 
mass of 2.5 kg and an initial velocity of 9.6 m s−1 in a direction at an angle of 60° to 
line AB. The two balls collide at point B. The balls stick together and then travel 
along the horizontal surface in a direction at right angles to the line AB, as shown 
in Fig. 3.37.
a By considering the components of momentum in the direction from A to B, 

show that ball X has a mass of 4.0 kg. [2]
b Calculate the common speed V of the two balls after the collision. [2]
c Determine the difference between the initial kinetic energy of ball X  

and the initial kinetic energy of ball Y. [2]

Cambridge International AS and A Level Physics (9702) Paper 22 Q3 March 2019

X

V

Y

A B

▲ Figure 3.37
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4.1 Turning effects of forces

4.1 Turning effects of forces
Centre of gravity
An object may be made to balance at a particular point. When it is balanced at this 
point, the object does not turn and so all the weight on one side of the pivot is balanced 
by the weight on the other side. Supporting the object at the pivot means that the only 
force which has to be applied at the pivot is one to stop the object falling – that is, a 
force equal to the weight of the object. Although all parts of the object have weight, the 
whole weight of the object appears to act at this balance point. This point is called the 
centre of gravity (C.G.) of the object.

The centre of gravity of an object is the point at which the whole weight of the 
object may be considered to act.

The weight of an object can be shown as a force acting vertically downwards at the 
centre of gravity. For a uniform object such as a ruler, the centre of gravity is at the 
geometrical centre.

AS LEVEL

Forces, density and pressure 4 

Learning outcomes
By the end of this topic, you will be able to:

4.1 Turning effects of forces
1  understand that the weight of an object may 

be taken as acting at a single point known as 
the centre of gravity

2 define and apply the moment of a force
3  understand that a couple is a pair of forces that 

acts to produce rotation only
4 define and apply the torque of a couple

4.2 Equilibrium of forces
1 state and apply the principle of moments
2  understand that, when there is no resultant 

force and no resultant torque, a system is in 
equilibrium

3  use a vector triangle to represent coplanar 
forces in equilibrium

4.3 Density and pressure
1 define and use density
2 define and use pressure
3  derive, from the definitions of pressure and 

density, the equation for hydrostatic pressure 
Δp = ρgΔh

4 use the equation Δp = ρgΔh
5  understand that the upthrust acting on an 

object in a fluid is due to a difference in 
hydrostatic pressure

6  calculate the upthrust acting on an object in a 
fluid using the equation  
F = ρgV (Archimedes’ principle)

Starting points
★ Understand the concept of weight as the effect of a gravitational field.
★ The use of vector triangles to add vectors.
★ For zero resultant force, the velocity of an object does not change (Newton’s 

first law).
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WORKED EXAMPLE 4A

In Figure 4.3, a light rod AB of length 45 cm is held at  
A so that the rod makes an angle of 65° to the vertical. 
A vertical force of 15 N acts on the rod at B. Calculate 
the moment of the force about the end A.

Answer

moment of force = force ×  perpendicular distance 
from pivot

= 15 × 0.45 sin 65°

(Remember that the distance must be in metres.)

= 6.1 N m

Moment of a force
When a force acts on an object, the force may cause the object to move in a straight line. 
It could also cause the object to turn or spin (rotate).

turning
effect

weight

▲ Figure 4.1 Turning effect on a metre ruler

Think about a metre rule held in the hand at one end so that the rule is horizontal 
(Figure 4.1). If a weight is hung from the ruler we can feel a turning effect on the ruler. 
The turning effect increases if the weight is increased or it is moved further from the 
hand along the ruler. The turning effect acts at the hand where the metre rule is pivoted. 
Keeping the weight and its distance along the rule constant, the turning effect can be 
changed by holding the ruler at an angle to the horizontal. The turning effect becomes 
smaller as the rule approaches the vertical position.

The turning effect of a force is called the moment of the force.

The moment of a force depends on the magnitude of the force and also on the distance of 
the force from the pivot or fulcrum. This distance must be defined precisely. In the simple 
experiment above, we saw that the moment of the force depended on the angle of the 
ruler to the horizontal. Varying this angle means that the line of action of the force from 
the pivot varies (see Figure 4.2). The distance required when finding the moment of a 
force is the perpendicular distance d of the line of action of the force from the pivot.

The moment of a force is defined as the product of the force and the perpendicular 
distance of the line of action of the force from the pivot.

Referring to Figure 4.2, the force has magnitude F and acts at a point distance l from the 
pivot. Then, when the ruler is at angle θ to the horizontal,

moment of force = F × d

= F × l cos θ

Since force is measured in newtons and distance is measured in metres, the unit of the 
moment of a force is newton-metre (N m).

d

F

pivot

l

q

▲ Figure 4.2 Finding the 
moment of a force

45 cm

A

65°

15 N

B

▲ Figure 4.3
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4.2 Equilibrium
 of forces

4
1 Referring to Figure 4.3, calculate the moment of the force about A for a vertical force 

of 25 N with the rod at an angle of 30° to the vertical.

Couples
When a screwdriver is used, we apply a turning effect to the handle. We do not apply 
one force to the handle because this would mean the screwdriver would move sideways. 
Rather, we apply two forces of equal size but opposite direction on opposite sides of the 
handle (see Figure 4.4).

A couple consists of two forces, equal in magnitude but opposite in direction 
whose lines of action do not coincide.

Consider the two parallel forces, each of magnitude F acting as shown in Figure 4.5 on 
opposite ends of a diameter of a disc of radius r. Each force produces a moment about 
the centre of the disc of magnitude Fr in a clockwise direction. The total moment about 
the centre is

F × 2r or F × perpendicular distance between the forces

Although a turning effect is produced, this turning effect is not called a moment because 
it is produced by two forces, not one. Instead, this turning effect is referred to as a torque. 
The unit of torque is the same as that of the moment of a force, i.e. newton-metre.

The torque of a couple is the product of one of the forces and the perpendicular 
distance between the forces.

It is interesting to note that, in engineering, the tightness of nuts and bolts is often stated 
as the maximum torque to be used when screwing up the nut on the bolt. Spanners 
used for this purpose are called torque wrenches because they have a scale on them to 
indicate the torque that is being applied.

handle of
screwdriver

F

F handle of
screwdriver

▲ Figure 4.4 Two forces 
acting as a couple

F

F

r

r

▲ Figure 4.5 Torque of a 
couple

▲ Figure 4.6 Tightening a 
wheel nut requires the 
application of a torque.

WORKED EXAMPLE 4B

Calculate the torque produced by two forces, each of magnitude 30 N, acting in 
opposite directions with their lines of action separated by a distance of 25 cm.

Answer

torque = force × separation of forces

= 30 × 0.25 (distance in metres)

= 7.5 N m

2 The torque produced by a person using a screwdriver is 0.18 N m. This torque is 
applied to the handle of diameter 4.0 cm. Calculate the force applied to the handle.

4.2 Equilibrium of forces
The principle of moments
A metre rule may be balanced on a pivot so that the rule is horizontal. Hanging a weight 
on the rule will make the rule rotate about the pivot. Moving the weight to the other 
side of the pivot will make the rule rotate in the opposite direction. Hanging weights on 
both sides of the pivot as shown in Figure 4.7 (overleaf) means that the ruler may rotate 
clockwise, or anticlockwise, or it may remain horizontal. In this horizontal position, 

Question

Question
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4
there is no resultant turning effect and so the total turning effect of the forces in the 
clockwise direction equals the total turning effect in the anticlockwise direction.

You can check this very easily with the apparatus of Figure 4.7.

▲ Figure 4.7

When an object has no tendency to change its speed of rotation, it is said to be in 
rotational equilibrium.

The principle of moments states that, for an object to be in rotational equilibrium, 
the sum of the clockwise moments about any point must equal the sum of the 
anticlockwise moments about that same point.

WORKED EXAMPLE 4C

Some weights are hung from a light rod AB as shown in Figure 4.8. The rod is pivoted. 
Calculate the magnitude of the force F required to balance the rod horizontally.

35 cm

40 cm 25 cm

1.2 N
2.5 N

F

BA

▲ Figure 4.8

Answer
Sum of clockwise moments = (0.25 × 1.2) + 0.35F

Sum of anticlockwise moments = 0.40 × 2.5

By the principle of moments

(0.25 × 1.2) + 0.35F = 0.40 × 2.5

0.35F = 1.0 − 0.3

F = 2.0 N

3 Some weights are hung from 
a light rod AB as shown in 
Figure 4.9. The rod is pivoted. 
Calculate the magnitude of the 
force F required to balance the  
rod horizontally.

F

5.0 N

2.0 N

35 cm

40 cm 20 cm

BA

▲ Figure 4.9

Question
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4.2 Equilibrium
 of forces

4
Equilibrium
The principle of moments gives the condition necessary for an object to be in rotational 
equilibrium. However, the object could still have a resultant force acting on it which 
would cause it to accelerate linearly. Thus, for complete equilibrium, there cannot be 
any resultant force in any direction.

In Topic 1.4 we added forces (vectors) using a vector triangle. When three forces 
act on an object the condition for equilibrium is that the vector diagram for these 
forces forms a closed triangle. When four or more forces act on an object the same 
principles apply.

For equilibrium, the closed vector triangle then becomes a closed vector polygon.

For an object to be in equilibrium:
1 the sum of the forces in any direction must be zero
2 the sum of the moments of the forces about any point must be zero.

WORKED EXAMPLE 4D

The uniform rod PQ shown in Figure 4.10 is horizontal and in equilibrium.

50 N

P

X

60°

29 N

Q

▲ Figure 4.10

The weight of the rod is 50 N. A force of 29 N that acts at end Q is 
60° to the horizontal. The force at end P is labelled X. Draw a vector 
triangle to represent the forces acting on the rod and determine the 
magnitude and direction of force X.

Answer
The forces keep the rod in equilibrium and hence form a closed 
triangle as shown in Figure 4.11.

A scale diagram can be drawn to show that X is 29 N and acts at 60° 
to the horizontal.

X

30°
29 N

50 N

▲ Figure 4.11

4 The same uniform rod PQ is in equilibrium, as in the above example.

a i Show that the upward forces equal the downward forces.

ii Show that the horizontal force to the left equals the horizontal force to the 
right.

b The length of the rod in Figure 4.10 is 100 cm. Determine the force X by taking 
moments about Q.

Question
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5 The mass of a metal cylinder is 200 g. The length of the cylinder is 6.0 cm and its 
diameter is 2.0 cm. Calculate the density of the metal in kg m–3.

6 A spherical metal ball has a radius of 2.5 cm. The density of the metal is 2700 kg m–3. 
Calculate the mass of the ball in kg.

Pressure
Pressure is defined as force per unit area, where the force F acts perpendicularly to the area A.

p = F/A

The symbol for pressure is p and its SI unit is the pascal (Pa), which is equal to one 
newton per square metre (N m–2).

Pressure in a liquid
The link between pressure and density comes when we deal with liquids or with fluids 
in general. Consider a point at a depth h1 below the surface of a liquid in a container. 
What is the pressure due to the liquid? Very simply, the pressure is caused by the weight 
of the column of liquid above a small area at that depth, as shown in Figure 4.12. The 
weight of the column is W = mg = ρAh1g, and the pressure ρ1 is W/A = ρgh1. The pressure 
at a depth of h2 is due the column of liquid above this depth and is given by p2 = ρ gh2.

p = ρgh

ρ = m/V

The symbol for density is ρ (Greek rho) and its SI unit is kg m–3.

WORKED EXAMPLE 4E

An iron sphere of radius 0.18 m has mass 190 kg. Calculate the density of iron.

Answer
First calculate the volume of the sphere from V = 43 πr3. This works out at 0.024 m3.

Application of the formula for density gives ρ = 7800 kg m–3.

4.3 Density and pressure
In this section we will bring together density and pressure to show an important link 
between them.

The difference in pressure due to the difference in water depth is  
        Δp (= p2 – p1) = ρg(h2 – h1) = ρgΔh

The pressure in a liquid increases with depth. The change in pressure in a fluid, Δp due 
to the change in depth Δh is given by:

Δp = ρgΔh

Density
The density of a substance is defined as its mass per unit volume.

Questions

A

h1

h2

▲ Figure 4.12 Column of 
liquid above the area A
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4.3 D
ensity and pressure

4
A fluid that is at rest has all points in the fluid in equilibrium. Hence the pressure 
at any point in a fluid must act in all directions at that point. The forces due to the 
pressure of a fluid acting on an object immersed in the fluid will act in all directions 
on that object.

The pressure is proportional to the depth below the surface of the liquid. If an external 
pressure, such as atmospheric pressure, acts on the surface of the liquid, this must be 
taken into account in calculating the absolute pressure. The absolute pressure is the 
sum of the external pressure and the pressure due to the depth below the surface of the 
liquid.

WORKED EXAMPLE 4F

Calculate the excess pressure over atmospheric at a point 1.2 m below the surface  
of the water in a swimming pool. The density of water is 1.0 × 103 kg m–3.

Answer
This is a straightforward calculation from p = ρgh.

Substituting, p = 1.0 × 103 × 9.81 × 1.2 = 1.2 × 104 Pa.

If the total pressure had been required, this value would be added to atmospheric 
pressure pA. Taking pA to be 1.01 × 105 Pa, the total pressure is 1.13 × 105 Pa.

7 Calculate the difference in blood pressure between the top of the head and the 
soles of the feet of a student 1.3 m tall, standing upright. 

 Take the density of blood as 1.1 × 103 kg m–3.

Upthrust
When an object is immersed in a fluid (a liquid or a gas), it appears to weigh less than 
when in a vacuum. Large stones under water are easier to lift than when they are out 
of the water. The reason for this is that immersion in the fluid provides an upthrust or 
buoyancy force.

We can see the reason for the upthrust when we think about an object, such as the 
cylinder in Figure 4.13, submerged in water. Remember that the pressure in a liquid 
increases with depth. Thus, the pressure at the bottom of the cylinder is greater than the 
pressure at the top of the cylinder. The pressure difference Δρ is given by

Δp = ρgh2 – ρgh1

This difference in pressure means that there is a bigger force acting upwards on the base 
of the cylinder, than there is acting downwards on the top. The difference in these forces 
is the upthrust or buoyancy force Fb. Looking at Figure 4.13, we can see that

Fb = Fup – Fdown

and, since

p = F/A

Fb = ρgA(h2 – h1) = ρgAl

= ρgV

where ρ is the density of the liquid, l is the length of the cylinder, A is the cross-sectional 
area of the cylinder, and V is its volume and V = Al. Since the column occupies a volume 
equal to the volume of the liquid it displaces, the liquid displaced by the column has 

A

Fup

Fdown

h2

h1

liquid

▲ Figure 4.13 Origin of 
the buoyancy force 
(upthrust)

Question
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SUMMARY

» The centre of gravity of an object is the point 
at which the whole weight of the object may be 
considered to act.

» The moment of a force is the product of the force 
and the perpendicular distance of the line of action 
of the force from the pivot.

» A couple consists of two equal forces acting in 
opposite directions whose lines of action do not 
coincide.

» The torque of a couple is a measure of the turning 
effect of the couple.

» The torque of a couple is the product of one of the 
forces and the perpendicular distance between the 
lines of action of the forces.

» The principle of moments states that for an object 
in rotational equilibrium the sum of the clockwise 
moments about a point is equal to the sum of the 
anticlockwise moments about the point.

» For an object to be in equilibrium:
– the sum of the forces in any direction must be zero
– the sum of the moments of the forces about any 

point must be zero.

» Density ρ is defined by the equation ρ = m/V, 
where m is the mass of an object and V is its 
volume.

» Pressure ρ is defined by the equation p = F/A, 
where F is the force acting perpendicularly to an 
area A.

» Pressure increases with depth in a fluid.  
The difference in pressure is proportional 
to the difference in depth between two points in 
the fluid, and the pressure difference is given by 
Δp = ρgΔh.

» The total pressure p at a point at a depth h below 
the surface of a fluid of density ρ is p = pA + ρgh,  
pA being the atmospheric pressure; the difference 
in pressure between the surface and a point at a 
depth h is ρgh.

» The upthrust F on an object immersed in a fluid  
is equal to the weight of the fluid displaced (F = ρgV).

mass ρV, and weight ρgV. Hence the upthrust is equal to the weight of the liquid 
displaced by the immersed object. This relation has been derived for a cylinder, but it 
will also apply to objects of any shape.

The rule that the upthrust acting on an object immersed in a fluid is equal to the weight 
of the fluid displaced is known as Archimedes’ principle.

WORKED EXAMPLE 4G

Calculate:
a the force needed to lift a metal cylinder when in air
b the force needed to lift the cylinder when immersed 

in water.
The density of the metal is 7800 kg m–3 and the density 
of water is 1000 kg m–3. The volume of the cylinder is 
0.50 m3.

Answers
a Force needed in air = weight of cylinder =  

0.50 × 7800 × 9.81 = 3.8 × 104 N

b Force needed in water  
= weight of cylinder − upthrust

 = 0.50 × 7800 × 9.81 – 0.50 × 1000 × 9.81  
= 3.3 × 104 N

The difference in the values in a and b is the upthrust 
on the metal cylinder when immersed in water. i.e. the 
weight of water displaced by the cylinder.
[The upthrust of the cylinder in air was neglected as 
the density of air is very much less than that of the 
metal.]

Questions
8 Explain why a boat made of metal is in equilibrium when stationary and floating  

on water.

9 A sphere of radius 4.5 cm is immersed in a liquid of density 800 kg m –3.  
Calculate the upthrust on the sphere.
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4

End of topic questions

END OF TOPIC QUESTIONS

1 A uniform beam of length L is supported by two forces X and Y so that it is in 
equilibrium. The position of the forces is shown in Fig. 4.14.

 What is the ratio of the forces X : Y?
 A 1 : 2            B 1 : 3       C  1 : 1        D 2 : 1
2 A rectangular block of mass 150 kg has sides of 60 cm, 90 cm and 12 cm (Fig. 4.15). 

What is the minimum pressure that the block exerts on the ground when it is 
resting on one of its sides?

 A 0.27 kPa         B 0.28 kPa           C 1.4 kPa          D  2.7 kPa
3 A metal drum is held 300 m beneath the surface of the sea by a vertical cable 

as shown in Fig. 4.16. The drum has a volume of 0.500 m3 and weight 800 N.  
The density of the sea water is 1030 kg m−3. What is the tension in the cable?

 A 0.80 kN     B 4.3 kN     C  5.1 kN     D 5.9 kN
4 A uniform rod of length 60 cm has a weight of 14 N. It is pivoted at one end and held 

in a horizontal position by a thread tied to its other end, as shown in Fig. 4.17. 
The thread makes an angle of 50° with the horizontal. Calculate:
a the moment of the weight of the rod about the pivot,
b the tension T in the thread required to hold the rod horizontally.

pivot
60 cm 50°

T

▲  Figure 4.17

5 A ruler is pivoted at its centre of gravity and weights are hung from the ruler as 
shown in Fig. 4.18. Calculate:
a the total anticlockwise moment about the pivot,
b the magnitude of the force F.

40 cm 45 cm

20 cm 25 cm

2.0 N6.0 N F2.5 N

▲  Figure 4.18

6 A uniform plank of weight 120 N rests on two stools as shown in Fig. 4.19. A weight 
of 80 N is placed on the plank, midway between the stools. Calculate:
a the force acting on the stool at A,
b the force acting on the stool at B.

0.5 m

4.0 m

80 N

1.0 m

BA

▲  Figure 4.19

L

X Y

beam

2L
3

L
3

▲  Figure 4.14

90 cm

60 cm
12 cm

▲  Figure 4.15

water surface

drum

cable

300 m

sea bed

▲  Figure 4.16
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7 A nut is to be tightened to a torque of 16 N m. Calculate the force which must be 

applied to the end of a spanner of length 24 cm in order to produce this torque.

8 a State the conditions required for an object to be in equilibrium.
b A uniform rod XY of length 0.80 m is at an angle of 40° to a horizontal surface, 

as shown in Fig. 4.20.

rod

W B

X

C

0.80 m

horizontal 40°

Y

A

▲  Figure 4.20

 Four forces A, B, C and W act on the rod to maintain equilibrium. Force C acts at 
right angles to the rod at end X and is 2.0 N. A vertical force B and a horizontal 
force A act on the rod at end Y. W is the weight of the rod.
i Show that the weight of the rod is 5.2 N by taking moments about end Y.
ii State the name of the force B and A.
iii Determine the force A.

c The cross-sectional area of the rod is 8.5 × 10–5 m2. Calculate the density of 
the rod.

9 Figs. 4.21a and b show a rod XY of length 0.35 m.

0.35 m

4.0 N

4.0 N

b)a)

30°

YX

4.0 N

Y

X

4.0 N

▲ Figure 4.21

 Forces of 4.0 N act at X and Y.

 Calculate the torque on rod XY in:
a Fig. 4.21a,
b Fig. 4.21b.
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End of topic questions

10 A solid cylinder has a radius of 2.0 cm and length 45 cm. The weight of the 
cylinder is 49 N. The cylinder is completely immersed in oil of density 
920 kg m–3. The apparent weight of the cylinder when immersed in the oil is WA.

 Calculate:
a the density of the cylinder,
b i the upthrust on the cylinder when immersed in the oil,

ii WA,
c the pressure difference between the top and bottom of the cylinder when 

immersed in the oil.

11 The water in a storage tank is 15 m above a water tap in the kitchen of a house. 
Calculate the pressure of the water leaving the tap. 

 Density of water = 1.0  × 103 kg m–3.

12 Show that the pressure p due to a liquid of density ρ is proportional to the depth h 
below the surface of the liquid.

13 a Define centre of gravity. [2]
b A uniform rod AB is attached to a vertical wall at A. The rod is held horizontally 

by a string attached at B and to point C, as shown in Fig. 4.22.

A

C

B
50°

O
8.5 N

1.2 m

mass M

wall

string

T

▲  Figure 4.22

 The angle between the rod and the string at B is 50°. The rod has length  
1.2 m and weight 8.5 N. An object O of mass M is hung from the rod at B.  
The tension T in the string is 30 N.
i Use the resolution of forces to calculate the vertical component of T. [1]
ii State the principle of moments. [1]
iii Use the principle of moments and take moments about A to show that the 

weight of the object O is 19 N. [3]
iv Hence determine the mass M of the object O. [1]

c Use the concept of equilibrium to explain why a force must act on the rod at A.
 [2]

Cambridge International AS and A Level Physics (9702) Paper 22 Q3 May/June 2013
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14 a Define the torque of a couple. [2]

b A uniform rod of length 1.5 m and weight 2.4 N is shown in Fig. 4.23.
1.5 m

pin

8.0 N rope B

rod

weight 2.4 N

8.0 Nrope A

▲  Figure 4.23

 The rod is supported on a pin passing through a hole in its centre. Ropes A and B 
provide equal and opposite forces of 8.0 N.
i Calculate the torque on the rod produced by ropes A and B. [1]
ii Discuss, briefly, whether the rod is in equilibrium. [2]

c The rod in b is removed from the pin and supported by ropes A and B, as shown 
in Fig. 4.24.

rope A

0.30 m

rope B

1.5 m

P

weight 2.4 N

▲  Figure 4.24

 Rope A is now at point P 0.30 m from one end of the rod and rope B is at the 
other end.
i Calculate the tension in rope B. [2]
ii Calculate the tension in rope A. [1]

Cambridge International AS and A Level Physics (9702) Paper 21 Q2 Oct/Nov 2011

15 a Define density. [1]
b A paving slab has a mass of 68 kg and dimensions 50 mm × 600 mm × 900 mm.

i Calculate the density, in kg m–3, of the material from which the paving slab 
is made. [2]

ii Calculate the maximum pressure a slab could exert on the ground when 
resting on one of its surfaces. [3]

Cambridge International AS and A Level Physics (9702) Paper 21 Q1 parts a and c  
Oct/Nov 2011
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End of topic questions

16	 a	 State	the	two	conditions	for	an	object	to	be	in	equilibrium.	 [2]
b	 A	uniform	beam	AC	is	attached	to	a	vertical	wall	at	end	A.	The	beam	held	

horizontal	by	a	rigid	bar	BD,	as	shown	in	Fig.	4.25.

	

wall

A

D

beam

bar

33 N

12 N

0.30 m 0.10 m

52°W

B
C

wire

bucket

▲  Figure	4.25

	 The	beam	is	of	length	0.40	m	and	weight	W.	An	empty	bucket	of	weight	12	N	is	
suspended	by	a	light	metal	wire	from	end	C.	The	bar	exerts	a	force	on	the	beam	
of	33	N	at	52°	to	the	horizontal.	The	beam	is	in	equilibrium.
i	 Calculate	the	vertical	component	of	the	force	exerted	by	the	bar	on		

the	beam.	 [1]
ii	 By	taking	moments	about	A,	calculate	the	weight	W of	the	beam.	 [3]

Cambridge International AS and A Level Physics (9702) Paper 22 Q3 parts a bi and ii  
Oct/Nov 2016

17	 A	uniform	plank	AB	of	length	5.0	m	and	weight	200	N	is	placed	across	a	stream,	as	
shown	in	Fig.	4.26.

stream

200 N

5.0 m

plank

A B

880 N

FA FB

x

▲ Figure	4.26

	 A	man	of	weight	880	N	stands	a	distance	x from	end	A.	The	ground	exerts	a	vertical	
force	FA	on	the	plank	at	end	A	and	a	vertical	force	FB	on	the	plank	at	end	B.	As	the	
man	moves	along	the	plank,	the	plank	is	always	in	equilibrium.
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4
a i Explain why the sum of the forces FA and FB is constant no matter  

where the man stands on the plank. [2]
ii The man stands a distance x = 0.50 m from end A. Use the principle of 

moments to calculate the magnitude of FB. [4]
b The variation with distance x of force FA is shown in Fig. 4.27.

0
fo

rc
e/

N

x/m

500

1000

2.0 3.0 4.01.0 5.0

FA

▲ Figure 4.27

 On a copy of Fig. 4.27, sketch a graph to show the variation with x of force FB. [3]

 Cambridge International AS and A Level Physics (9702) Paper 21 Q3 May/June 2014

18 A cylindrical disc is shown in Fig. 4.28.

 

28 mm

12 mm

▲ Figure 4.28

 The disc has diameter 28 mm and thickness 12 mm. The material of the disc  
has density 6.8 × 103 kg m–3. Calculate, to two significant figures, the weight of  
the disc.  [4]

Cambridge International AS and A Level Physics (9702) Paper 23 Q1 Oct/Nov 2013

19 a Define pressure.
b A solid sphere of diameter 30.0 cm is fully immersed near the surface 

of the sea. The sphere is released from rest and moves vertically 
downwards through the seawater. The weight of the sphere is 1100 N. 
An upthrust U acts on the sphere. The upthrust remains constant as the 
sphere moves downwards.

 The density of the seawater is 1030 kg m–3.
i Calculate the density of the material of the sphere.
ii Briefly explain the origin of the upthrust acting on the sphere.
iii Show that the upthrust U is 140 N.
iv Calculate the initial acceleration of the sphere.
v The viscous (drag) force D acting on the sphere is given by
 D = 12 Cρπr2v2

 where r is the radius of the sphere and v is its speed. ρ is the density of 
the seawater.

 The constant C has no units and is equal to 0.50.
 Determine the constant (terminal) speed reached by the sphere.
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5.1 Energy conservation
AS LEVEL

Work, energy and power 5 

Learning outcomes
By the end of this topic, you will be able to:

5.1 Energy conservation
1 understand the concept of work, and recall 

and use work done = force × displacement in 
the direction of the force

2 recall and apply the principle of conservation 
of energy

3 recall and understand that the efficiency of 
a system is the ratio of useful energy output 
from the system to the total energy input

4 use the concept of efficiency to solve 
problems

5 define power as work done per unit time

6 solve problems using the relationships  
P = W/t

7 derive P = Fv and use it to solve problems

5.2  Gravitational potential energy and kinetic 
energy
1 derive, using W = Fs, the formula ΔEp = mgΔh 

for gravitational potential energy changes in 
a uniform gravitational field

2 recall and use the formula ΔEp = mgΔh for 
gravitational potential energy changes in a 
uniform gravitational field

3 derive, using the equations of motion, the 
formula for kinetic energy Ek = 1

2
mv2

4 recall and use Ek = 12mv2

Starting points
★ Know that there are various forms of energy.
★ Understand that energy can be converted from one form to another.
★ Machines enable us to do useful work by converting energy from one form to 

another.

5.1 Energy conservation
Work

I’m going to work today.’

‘Where do you work?’

‘I’ve done some work in the garden.’

‘Lots of work was done lifting the box.’

‘I’ve done my homework.’

The words ‘work’, ‘energy’ and ‘power’ are in use in everyday English language but 
they have a variety of meanings. In physics, they have very precise meanings. The 
word work has a definite interpretation. The vagueness of the term ‘work’ in everyday 
speech causes problems for some students when they come to give a precise scientific 
definition of work.

Work is done when a force moves the point at which it acts (the point of 
application) in the direction of the force.

work done = force × displacement in the direction of the force
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5
It is very important to include direction in the definition of work done. A car can be 
pushed horizontally quite easily but, if the car is to be lifted off its wheels, much more 
work has to be done and a machine, such as a car-jack, is used.

When a force moves its point of application in the direction of the force, the force does 
work and the work done by the force is said to be positive. Conversely, if the direction of 
the force is opposite to the direction of movement, work is done on the force. This work 
done is then said to be negative. This is illustrated in Figure 5.2.

▲ Figure 5.1 The weight-
lifter uses a lot of 
energy to lift the 
weights but they can be 
rolled along the ground 
with little effort.

The term displacement represents the distance moved in a particular direction.

Displacement is a vector quantity, as is force. However, work done has no direction, only 
magnitude (size), and is a scalar quantity. It is measured in joules (J).

When a force of one newton moves its point of application by one metre in the 
direction of the force, one joule of work is done.

work done in joules  
= force in newtons × distance moved in metres in the direction of the force

It follows that a joule (J) may be said to be a newton-metre (N m). If the force and the 
displacement are not both in the same direction, then the component of the force in the 
direction of the displacement must be found by resolving (see Topic 1.4).

Consider a force F acting along a line at an angle θ to the displacement, as shown in 
Figure 5.4. The component of the force along the direction of the displacement is F cos θ.

work done for displacement x = F cos θ × x  
 = Fx cos θ

Note that the component F sin θ of the force is at right angles to the displacement. Since there 
is no displacement in the direction of this component, no work is done in that direction.

▲ Figure 5.3 The useful 
work done by the small 
tug-boat is found using 
the component of the 
tension in the rope  
along the direction of 
motion of the ship.

x

F

q

▲ Figure 5.4

initial position final position

work is done by the force 

direction of movement
of the force

of forceof force

final position initial position

direction of movement
of the force

work is done on the force

of force of force

▲ Figure 5.2

initial position final position

work is done by the force 

direction of movement
of the force

of forceof force

final position initial position

direction of movement
of the force

work is done on the force

of force of force

 WORKED EXAMPLE 5A

A child tows a toy by means of 
a string as shown in Figure 5.5.
The tension in the string is 1.5 N 
and the string makes an angle of 
25° with the horizontal.
 Calculate the work done in 
moving the toy horizontally 
through a distance of 265 cm.

Answer
work done = horizontal component of tension × 

distance moved

 = 1.5 cos 25° × 265 × 10–2

 = 3.6 J

25°

1.5 N

▲ Figure 5.5
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5.1 Energy conservation

5
1 A box weighs 45 N. Calculate the work done in lifting the box through a vertical 

height of:

a 4.0 m

b 67 cm.

2 A force of 36 N acts at an angle of 55° to the vertical. The force moves its point of 
application by 64 cm in the direction of the force. Calculate the work done by:

a the horizontal component of the force

b the vertical component of the force.

Energy
In order to wind up a spring, work has to be done because a force must be moved 
through a distance. When the spring is released, it can do work; for example, making a 
child’s toy move. When the spring is wound, it stores the ability to do work. Anything 
that is able to do work is said to have energy.

An object that can do work must have energy.

An object with no energy is unable to do work. Energy and work are both scalars. 
Since work done is measured in joules (J), energy is also measured in joules. Table 5.1 
lists some typical values of energy rounded to the nearest order of magnitude.

energy/J

radioactive decay of a nucleus 10–13

sound of speech on ear for 1 second 10–8

moonlight on face for 1 second 10–3

beat of the heart 1

burning a match 103

large cream cake 106

energy released from 100 kg of coal 1010

earthquake 1019

energy received on Earth from the Sun in one year 1025

rotational energy of the Milky Way galaxy 1050

estimated energy of formation of the Universe 1070

▲ Table 5.1 Typical energy values

Energy conversion and conservation
Newspapers sometimes refer to a ‘global energy crisis’. In the near future, there may well be a 
shortage of fossil fuels. Fossil fuels are sources of chemical energy. It would be more accurate 
to refer to a ‘fuel crisis’. When chemical energy is used, the energy is transformed into other 
forms of energy, some of which are useful and some of which are not. Eventually, all the 
chemical energy is likely to end up as energy that is no longer useful to us. For example, 
when petrol is burned in a car engine, some of the chemical energy is converted into the 
kinetic energy of the car and some is wasted as heat (thermal) energy. When the car stops, its 
kinetic energy is converted into internal energy in the brakes. The temperature of the brakes 
increases and thermal energy is released. The outcome is that the chemical energy has been 
converted into thermal energy which dissipates in the atmosphere and is of no further use. 
However, the total energy present in the Universe has remained constant. All energy changes 
are governed by the law of conservation of energy. This law states that

Energy cannot be created or destroyed. It can only be converted from one form to 
another.

▲ Figure 5.6 The spring 
stores energy as it is 
stretched, releasing the 
energy as it returns to 
its original shape.

Questions
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5
There are many different forms of energy and you will meet a number of these during your 
Cambridge International AS & A Level Physics studies. Some of the more common forms 
are listed in Table 5.2.

energy notes

gravitational potential energy energy due to position of a mass in a gravitational field

kinetic energy energy due to motion

elastic potential energy energy stored due to stretching or compressing an object

electric potential energy energy due to the position of a charge in an electric field

electromagnetic radiation energy associated with waves in the electromagnetic 
spectrum

solar energy electromagnetic radiation from the Sun

internal energy random kinetic and potential energy of the molecules in 
an object

chemical energy energy released during chemical reactions

thermal energy energy transferred due to temperature difference 
(sometimes called heat energy)

▲ Table 5.2 Forms of energy

 WORKED EXAMPLE 5B

Map out the energy changes taking place when a battery is connected to a lamp.

Answer

Chemical energy in battery → energy transferred by current in wires → 
light energy and internal energy of the lamp

3 Map out the following energy changes:

a a child swinging on a swing

b an aerosol can producing hairspray

c a lump of clay thrown into the air which subsequently hits the ground.

Efficiency
Machines are used to change energy from one form into some other more useful form. 
In most energy changes some energy is ‘lost’ as heat (thermal) energy. For example, 
when a ball rolls down a slope, the total change in gravitational potential energy is not 
equal to the gain in kinetic energy because heat (thermal) energy has been produced as a 
result of frictional forces.

Efficiency gives a measure of how much of the total energy may be considered useful 
and is not ‘lost’.

efficiency = 
useful energy output

total energy input

Efficiency may be given either as a ratio or as a percentage. Since energy cannot be 
created, efficiency can never be greater than 100% and a ‘perpetual motion’ machine is 
not possible (Figure 5.7).

Question
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▲ Figure 5.7 An attempt to design a machine to get something for  
nothing by breaking the law of conservation of energy

 WORKED EXAMPLE 5C

A man lifts a weight of 480 N through a vertical distance of 3.5 m using a rope and 
some pulleys. The man pulls on the rope with a force of 200 N and a length of 10.5 m 
of rope passes through his hands. Calculate the efficiency of the pulley system.

Answer
 work done by man = force × distance moved (in direction of the force)

  = 200 × 10.5

  = 2100 J

 work done lifting load = 480 × 3.5

  = 1680 J

Since energy is the ability to do work and from the definition of efficiency,

efficiency = work got out/work put in

 = 1680/2100

 = 0.80 or 80%

4 An electric heater transfers energy from the mains supply into thermal energy. 
Suggest why this process may be 100% efficient.

5 The electric motor of an elevator (lift) uses 630  kJ of energy when raising the elevator 
and passengers, of total weight 12 500 N, through a vertical height of 29 m. Calculate 
the efficiency of the elevator.

Power
Machines such as wind turbines or engines do work for us when they change energy 
into a useful form. However, not only is the availability of useful forms of energy 
important, but also the rate at which it can be converted from one form to another. 
The rate of converting energy or using energy is known as power.

We have seen that energy is the ability to do work. Consider a family car and a Grand 
Prix racing car which both contain the same amount of fuel. They are capable of doing 
the same amount of work, but the racing car is able to travel much faster. This is because 
the engine of the racing car can convert the chemical energy of the fuel into useful 

Questions
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5
energy at a much faster rate. The engine is said to be more powerful. Power is the rate of 
doing work. Power is given by the formula

power = 
work done
time taken

The unit of power is the watt (symbol W) and is equal to a rate of working of 1 joule 
per second. This means that a light bulb of power 1 W will convert 1 J of energy to other 
forms of energy (e.g. light and heat) every second. Table 5.3 gives some values of power 
rounded to the nearest order of magnitude.

power/W

power to operate a small calculator 10–6

light power from a torch 10–3

loudspeaker output 10

manual labourer working continuously 100

water buffalo working continuously 103

hair dryer 103

motor car engine 104

electric train 106

electricity generating station output 109

▲ Table 5.3 Values of power

Power, like energy, is a scalar quantity.

Care must be taken when referring to power. It is common in everyday language to say that 
a strong person is ‘powerful’. In physics, strength, or force, and power are not the same. Large 
forces may be exerted without any movement and thus no work is done and the power is zero! 
For example, a large rock resting on the ground is not moving, yet it is exerting a large force.

Consider a force F which moves a distance x at constant velocity v in the direction of the 
force, in time t. The work done W by the force is given by

W = Fx

Dividing both sides of this equation by time t gives

W/t = F(x/t)

Now, W/t is the rate of doing work, i.e. the power P and x/t = v. Hence,

P = Fv

power = force × velocity

 WORKED EXAMPLE 5D

A small electric motor is used to lift a weight of 1.5 N through a vertical distance of 
120 cm in 2.7 s. Calculate the useful power output of the motor.

Answer
work done =  force × displacement in the direction of the force

=  1.5 × 1.2 (the displacement must be in metres)
= 1.8 J

       power = 
work done
time taken

= (1.8/2.7)

= 0.67 W
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6 Calculate the amount of energy converted into thermal energy when an electric fire, 

rated at 2.4 kW, is left switched on for a time of 3.0 minutes.

7 The output power of the electric motors of a train is 3.6 MW when the train is 
travelling at 30 m s–1. Calculate the total force opposing the motion of the train.

8 A boy of mass 60 kg runs up a flight of steps in a time of 1.8 s. There are 22 steps and 
each one is of height 20 cm. Calculate the useful power developed in the boy’s legs. 
(Take the acceleration of free fall as 9.81 m s–2.)

5.2 Gravitational potential energy and kinetic energy

Gravitational potential energy

Potential energy is the ability of an object to do work as a result of its position or 
shape.

We have already seen that a wound-up spring stores energy. This energy is potential 
energy because the spring is strained. More specifically, the energy may be called elastic 
(or strain) potential energy (see Topic 6.2). Elastic potential energy is stored in objects 
which have had their shape changed elastically. Examples include stretched wires and 
twisted elastic bands.

Newton’s law of gravitation (see Topic 13.2) tells us that all masses attract one another. 
We rely on the force of gravity to keep us on Earth! When two masses are pulled apart, 
work is done on them and so they gain gravitational potential energy. If the masses 
move closer together, they lose gravitational potential energy.

Gravitational potential energy is energy possessed by a mass due to its position in 
a gravitational field.

Changes in gravitational potential energy are of particular importance for an  
object near to the Earth’s surface because we frequently do work raising masses  
and, conversely, the energy stored is released when the mass is lowered again.  
The gravitational field near the surface of the Earth is taken to be uniform and so the 
acceleration of free fall g has a constant value, 9.81 m s–2. An object of mass m near the 
Earth’s surface has weight mg (see Topic 3.1). This weight is the force with which the 
Earth attracts the mass (and the mass attracts the Earth). If the mass moves a vertical 
distance h,

work done = Fs

 = force × displacement in the direction of the force

 = mgh

When the mass is raised, the work done is stored as gravitational potential energy and 
this energy can be recovered when the mass falls.

Change in gravitational potential energy ΔEp = mgΔh

Questions

▲ Figure 5.8 The cars on 
the rollercoaster have 
stored gravitational 
potential energy. This 
energy is released as 
the cars fall.
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5
It is important to remember that, for the energy to be measured in joules, the mass m 
must be in kilograms, the acceleration of free fall g in metres (second)–2 and the change 
in height Δh in metres.

Notice that a zero point of gravitational potential energy has not been stated. We are 
concerned with changes in potential energy when a mass rises or falls.

 WORKED EXAMPLE 5E

1 Map out the energy changes taking place when an object moves from its lowest 
point to its highest point on the end of a vertical spring after the spring is 
stretched.

2 A shop assistant stacks a shelf with 25 tins of beans, each of mass 472 g 
(Figure 5.9). Each tin has to be raised through a distance of 1.8 m. Calculate 
the gravitational potential energy gained by the tins of beans, given that the 
acceleration of free fall is 9.81 m s–2.

1.8 m

▲ Figure 5.9

Answers
1 (maximum) elastic potential energy in stretched spring → gravitational potential 

energy and kinetic energy and (reduced) elastic potential energy of object (as it 
moves up) → (maximum) gravitational potential energy (zero kinetic energy ) 
and elastic potential energy in the compressed spring at its highest point

2 total mass raised = 25 × 472 = 11 800 g

 = 11.8 kg

increase in potential energy = m × g × h

 = 11.8 × 9.81 × 1.8

  =  210 J (to 2 significant figures)

9 The acceleration of free fall is 9.81 m s–2. Calculate the change in gravitational 
potential energy when:

a a person of mass 70 kg climbs a cliff of height 19 m

b a book of mass 940 g is raised vertically through a distance of 130 cm

c an aircraft of total mass 2.5 × 105 kg descends by 980 m.

Question
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Kinetic energy
As an object falls, it loses gravitational potential energy and, in so doing, it speeds up. 
Energy is associated with a moving object. In fact, we know that a moving object can be 
made to do work as it slows down. For example, a moving hammer hits a nail and, as it 
stops, does work to drive the nail into a piece of wood.

Kinetic energy is energy due to motion.

Consider an object of mass m moving with a constant acceleration a. In a distance s, 
the object accelerates from velocity u to velocity v. Then, by referring to the equations of 
motion (see Topic 2),

v2 = u2 + 2as

By Newton’s law (see Topic 3), the force F giving rise to the acceleration a is given by

F = ma

Combining these two equations,

v2 = u2 + 2(F/m)s

Re-arranging,

mv2 = mu2 + 2Fs

2Fs = mv2 – mu2

Fs = 1
2
mv2 – 1

2
mu2

By definition, the term Fs is the work done by the force moving a distance s. Therefore, 
since Fs represents work done, then the other terms in the equation, 12mv2 and 12mu2, 
must also have the units of work done, or energy (see Topic 1). The magnitude of each of 
these terms depends on velocity squared and so 12mv2 and 12mu2 are terms representing 
energy which depends on velocity (or speed).

The kinetic energy Ek of an object of mass m moving with speed v is given by Ek = 12mv2.

For the kinetic energy to be in joules, mass must be in kilograms and speed in metres  
per second.

The full name for the term Ek = 12mv2 is translational kinetic energy because it is energy 
due to an object moving in a straight line. It should be remembered that rotating objects 
also have kinetic energy and this form of energy is known as rotational kinetic energy.

 WORKED EXAMPLE 5F

Calculate the kinetic energy of a car of mass 900 kg moving at a speed of 20 m s–1. 
State the form of energy from which the kinetic energy is derived.

Answer
kinetic energy = 12mv2

 = 12 × 900 × 202

 = 1.8 × 105 J

This energy is derived from the chemical energy of the fuel.

▲ Figure 5.10 When the 
mass falls, it gains 
kinetic energy and drives 
the pile into the ground.
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5
10 Calculate the kinetic energy of a car of mass 800 kg moving at 100 kilometres per hour.

11 A cycle and cyclist have a combined mass of 80 kg and are moving at 5.0 m s–1. 
Calculate:

a the kinetic energy of the cycle and cyclist

b the increase in kinetic energy for an increase in speed of 5.0 m s–1.

Questions

END OF TOPIC QUESTIONS

1 A force F moves its point of application by a distance x in a direction making an 
angle θ with the direction of the force, as shown in Fig. 5.11.

 The force does an amount W of work. Copy and complete the following table.

F/N x/m θ/° W/J
15 6.0 0
15 6.0 90
15 6.0 30
46 23 6.4
2.4 × 103 1.6 × 102 3.1 × 105

2.8 13 7.1 × 103

2 An elastic band is stretched so that its length increases by 2.4 cm. The force 
required to stretch the band increases linearly from 6.3 N to 9.5 N. Calculate:
a the average force required to stretch the elastic band,
b the work done in stretching the band.

3 Name each of the following types of energy:
a energy used in muscles,
b energy of water in a mountain lake,
c energy captured by a wind turbine,
d energy produced when a firework explodes,
e energy of a compressed gas.

4 A child of mass 35 kg moves down a sloping path on a skate board. The sloping 
path makes an angle of 4.5° with the horizontal. The constant speed of the child 
along the path is 6.5 m s–1. Calculate:
a the vertical distance through which the child moves in 1.0 s,
b the rate at which potential energy is being lost (g = 9.81 m s–2).

x

F

q

▲ Figure 5.11

SUMMARY

» When a force moves its point of application in the 
direction of the force, work is done.

» Work done = Fx cos θ, where θ is the angle between 
the direction of the force F and the displacement x.

» Energy is needed to do work; energy is the ability 
to do work.

» Energy cannot be created or destroyed. It can only 
be converted from one form to another.

» Efficiency = useful energy output/total energy input
» Power is defined as the rate of doing work or work 

done per unit time:
 power = work done/time taken, P = W/t.
» The unit of power is the watt (W).
 1 watt = 1 joule per second

» Power = force × velocity
» Potential energy is the energy stored in an object 

due to its position or shape; examples are elastic 
potential energy and gravitational potential energy.

» When an object of mass m moves vertically through 
a distance Δh in a uniform gravitational field, then the 
change in gravitational potential energy is given by: 
ΔEp = mgΔh where g is the acceleration of free fall.

» Kinetic energy is the energy stored in an object 
due to its motion.

» For an object of mass m moving with speed v, the 
kinetic energy is given by: Ek = 12mv2.
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End of topic questions

5 A stone of mass 120 g is dropped down a well. The surface of the water in the well 
is 9.5 m below ground level. The acceleration of free fall of the stone is 9.81 m s–2. 
Calculate, for the stone falling from ground level to the water surface:
a the loss of potential energy,
b its speed as it hits the water, assuming all the potential energy has been 

converted into kinetic energy.

6 An aircraft of mass 3.2 × 105 kg accelerates along a runway. Calculate the change 
in kinetic energy, in MJ, when the aircraft accelerates:
a from zero to 10 m s–1,
b from 30 m s–1 to 40 m s–1,
c from 60 m s–1 to 70 m s–1.

7 In order to strengthen her legs, an athlete steps up on to a box and then down again 
30 times per minute. The girl has mass 50 kg and the box is 35 cm high. The exercise 
lasts 4.0 minutes and as a result of the exercise, her leg muscles generate 120 kJ of 
heat energy. Calculate the efficiency of the leg muscles (g = 9.81 m s–2).

8 By accident, the door of a refrigerator is left open. Use the law of conservation of 
energy to explain whether the temperature of the room will rise, stay constant or 
fall after the refrigerator has been working for a few hours.

9 A ball of mass 0.50 kg is thrown vertically upwards with a speed of 20 m s–1. It is 
thrown from a platform 12 m above the ground reaches a maximum height before 
the ball falls to the ground, as shown in Fig. 5.12. What is the kinetic energy of the 
ball just as it hits the ground? Assume air resistance is negligible.

 A  59 J B 100 J C 160 J D 260 J

10 A car moves along a track that is in a vertical plane and follows an arc of a circle 
of radius 14 m, as shown in Fig. 5.13. The car has a mass 500 kg moves past point 
A with a speed of 20 m s–1. The car has a speed of 10 m s–1 at B. What is the average 
resistive force acting on the car as it moves from A to B?

 A 290 N B 450 N C 3400 N D 5400 N

14m

A 20ms−1

10ms−1

B

14m

▲ Figure 5.13

11 A car of mass 1500 kg moves up an incline at a constant speed, as shown in  
Fig. 5.14. The incline is at 12° to the horizontal. What is the power provided by the 
engine of the car for it to travel up the incline at 16 m s–1?

 A 5.0 kW B 23 kW C 49 kW D 230 kW

12° horizontal

16ms−1

▲ Figure 5.14

platform

12 m

path of 
ball

20 m s–1

▲ Figure 5.12
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5
12 A car travels in a straight line at speed v along a horizontal road. The car moves 

against a resistive force F given by the equation

 F = 400 + kv2

 where F is in newtons, v in m s–1 and k is a constant.
 At speed v = 15 m s–1, the resistive force F is 1100 N.

a Calculate, for this car:
i the power necessary to maintain the speed of 15 m s–1,
ii the total resistive force at a speed of 30 m s–1,
iii the power required to maintain the speed of 30 m s–1.

b Determine the energy expended in travelling 1.2 km at a constant speed of:
i 15 m s–1,
ii 30  m s–1.

c Using your answers to part b, suggest why, during a fuel shortage, the 
maximum permitted speed of cars may be reduced.

13 a Distinguish between gravitational potential energy and elastic potential  
energy. [2]

b A ball of mass 65 g is thrown vertically upwards from ground level with a speed 
of 16 m s–1. Air resistance is negligible.
i Calculate, for the ball:

1 the initial kinetic energy, [2]
2 the maximum height reached. [2]

ii The ball takes time t to reach maximum height. For time t/2 after the ball 
has been thrown, calculate the ratio:

 
potential energy of ball
kinetic energy of ball  [3]

iii State and explain the effect of air resistance on the time taken for  
the ball to reach maximum height. [1]

Cambridge International AS and A Level Physics (9702) Paper 23 Q4 Oct/Nov 2013

14 a Explain what is meant by work done. [1]
b A car is travelling along a road that has a uniform downhill gradient, as shown 

in Fig. 5.15.
 The car has a total mass of 850 kg. The angle of the road to the horizontal  

is 7.5°. Calculate the component of the weight of the car down the slope. [2]
c The car in b is travelling at a constant speed of 25 m s–1. The driver then applies the 

brakes to stop the car. The constant force resisting the motion of the car is 4600 N.
i Show that the deceleration of the car with the brakes applied is 4.1 m s–2. [2]
ii Calculate the distance the car travels from when the brakes are applied 

until the car comes to rest. [2]
iii Calculate:

1 the loss of kinetic energy of the car, [2]
2 the work done by the resisting force of 4600 N. [1]

iv The quantities in iii part 1 and in iii part 2 are not equal. Explain why these  
two quantities are not equal. [1]

Cambridge International AS and A Level Physics (9702) Paper 21 Q2 May/June 2011

15 A ball is thrown vertically down towards the ground with an initial velocity of 
4.23 m s–1. The ball falls for a time of 1.51 s before hitting the ground. Air resistance 
is negligible.
a i Show that the downwards velocity of the ball when it hits the ground is 

19.0 m s–1. [2]
ii Calculate, to three significant figures, the distance the ball falls to the 

ground. [2]

25 m s–1

7.5°

▲  Figure 5.15
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b The ball makes contact with the ground for 12.5 ms and rebounds with an 

upwards velocity of 18.6 m s–1. The mass of the ball is 46.5 g.
i Calculate the average force acting on the ball on impact with the ground. [4]
ii Use conservation of energy to determine the maximum height the ball 

reaches after it hits the ground. [2]
c State and explain whether the collision the ball makes with the ground is 

elastic or inelastic. [1]

Cambridge International AS and A Level Physics (9702) Paper 21 Q2 May/June 2012

16 A ball is thrown vertically upwards towards a ceiling and then rebounds, as 
illustrated in Fig. 5.16.

ceiling

speed 3.8 m s–1 ball leaving
ceiling

ball thrown
upwards

speed 9.6 m s–1

▲  Figure 5.16

 The ball is thrown with speed 9.6 m s–1 and takes a time of 0.37 s to reach the 
ceiling. The ball is then in contact with the ceiling for a further time of 0.085 s 
until leaving it with a speed of 3.8 m s–1. The mass of the ball is 0.056 kg.  
Assume that air resistance is negligible.
a Show that the ball reaches the ceiling with a speed of 6.0 m s–1. [1]
b Calculate the height of the ceiling above the point from which the ball was 

thrown. [2]
c Calculate:

i the increase in gravitational potential energy of the ball for its movement 
from its initial position to the ceiling, [2]

ii the decrease in kinetic energy of the ball while it is in contact with the 
ceiling. [2]

d State how Newton’s third law applies to the collision between the ball and  
the ceiling. [2]

e Calculate the change in momentum of the ball during the collision. [2]
f Determine the magnitude of the average force exerted by the ceiling on the  

ball during the collision. [2]

Cambridge International AS and A Level Physics (9702) Paper 23 Q3 May/June 2018

17 a i Define power. [1]
ii State what is meant by gravitational potential energy. [1]

b An aircraft of mass 1200 kg climbs upwards with a constant velocity of 45 m s–1, 
as shown in Fig. 5.17.

 The aircraft’s engine produces a thrust force of 2.0 × 103 N to move the aircraft 
through the air. The rate of increase in height of the aircraft is 3.3 m s–1.
i Calculate the power produced by the thrust force. [2]
ii Determine, for a time interval of 3.0 minutes:

1 the work done by the thrust force to move the aircraft, [2]
2 the increase in gravitational potential energy of the aircraft, [2]
3 the work done against air resistance. [1]

iii Use your answer in b ii part 3 to calculate the force due to air  
resistance acting on the aircraft. [1]

iv With reference to the motion of the aircraft, state and explain  
whether the aircraft is in equilibrium. [2]

Cambridge International AS and A Level Physics (9702) Paper 21 Q3 Oct/Nov 2018

▲  Figure 5.17

aircraft
mass 1200 kg

path of
aircraft

velocity
45 m s�1

thrust force
2.0 � 103N

End of topic questions
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	 6	 Deformation	of	solids

force applied
by support

force applied
by load (weight)

▲	 Figure 6.1	A	loaded	
helical	spring

lo
ad

extension

P

straight line

0

▲ Figure 6.2 Extension	of	
a	loaded	spring

Learning outcomes
By	the	end	of	this	topic,	you	will	be	able	to:

6.1 Stress and strain
1	 understand	that	deformation	is	caused	by	

tensile	or	compressive	forces	(forces	and	
deformations	will	be	assumed	to	be	in	one	
dimension	only)

2	 understand	and	use	the	terms	load,	
extension,	compression	and	limit	of	
proportionality

3	 recall	and	use	Hooke’s	law
4	 recall	and	use	the	formula	for	the	spring	

constant	k = F/x
5	 define	and	use	the	terms	stress,	strain	and	

the	Young	modulus

6	 describe	an	experiment	to	determine	the	
Young	modulus	of	a	metal	in	the	form	of	a	
wire

6.2 Elastic and plastic behaviour
1	 understand	and	use	the	terms	elastic	

deformation,	plastic	deformation	and	elastic	
limit

2	 understand	that	the	area	under	the	force–
extension	graph	represents	the	work	done

3	 determine	the	elastic	potential	energy	
of	a	material	deformed	within	its	limit	of	
proportionality	from	the	area	under	the	
force–extension	graph

4	 recall	and	use	Ep = 1
2
Fx = 1

2
kx2	for	a	material	

deformed	within	its	limit	of	proportionality

Starting points
★	 When	forces	are	applied	to	a	solid	object,	its	shape	or	size	may	change.
★	 The	change	of	shape	or	size	is	called	deformation.
★	 The	deformation	is	called	a	tensile	deformation	if	an	object	is	stretched	or	a	

compressive	deformation	if	the	object	squeezed/compressed.
★	 The	load	or	force	that	stretches	a	wire	is	called	a	tensile	force.
★	 Work	done	=	force	×	displacement	in	the	direction	of	the	force
★	 Potential	energy	is	the	energy	stored	in	an	object	due	to	its	position	(relative	

to	other	bodies)	or	shape.

6.1 Stress and strain
Hooke’s	law
A helical spring, attached to a fixed point, hangs vertically and has weights attached to 
its lower end, as shown in Figure 6.1. As the magnitude of the weight is increased the 
spring becomes longer. The increase in length or deformation of the spring is called the 
extension of the spring and the weight attached to the spring is called the load.

The extension is equal to the extended length – natural/original length.

The load is the tensile force that causes the extension.

Note that a force acts on the spring at each end. An upwards force acts on the spring 
from the support at the fixed point as well as the load and the spring is in equilibrium.

Figure 6.2 shows a load against extension for the spring. The section of the line from 
the origin to the point P is straight. In this region, the extension of the spring is 
proportional to the load. The point P is referred to as the limit of proportionality.
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6.1 Stress and strain

6
The fact that there is a proportional relationship between load and extension is 
expressed in Hooke’s law. It should be appreciated that, although we have used a spring 
as an illustration, the law applies to any object, provided the limit of proportionality has 
not been exceeded, for example a wire.

Hooke’s law states that, provided the limit of proportionality is not exceeded, the 
extension of an object is proportional to the applied load.

The law can be expressed in the form of an equation

force F ∝ extension e

Removing the proportionality sign gives

F = ke

where k is a constant, known as the spring constant (or force constant).

The spring constant is the force per unit extension, k = F/x.

The unit of the constant is newton per metre (N m–1).

The spring constant is different for each spring or wire.

It should be noted that if a load (compressive force) causes the object to be compressed 
then Hooke’s law still applies up to the limit of proportionality. The compression is then 
equal to the original length – reduced length.

WORKED EXAMPLE 6A

An elastic cord has an original length of 25 cm. When the cord is extended by 
applying a force at each end, the length of the cord becomes 40 cm for forces of 
0.75 N. Calculate the force constant of the cord.

Answer
extension of cord = 15 cm, the force causing the extension (the load) is 0.75 N

 force constant = 0.75/0.15 (extension in metres)

 = 5.0 N m–1

1 Explain what is meant by the limit of proportionality.

2 Calculate the spring constant for a spring which extends by a distance of 3.5 cm 
when a load of 14 N is hung from its end.

3 A steel wire extends by 1.5 mm when it is under a tensile force of 45 N. Calculate:

a the spring constant of the wire

b the tensile force required to produce an extension of 1.8 mm, assuming that the 
limit of proportionality is not exceeded.

The	Young	modulus
The spring constant is different for each specimen of a material that has a different 
shape or size. The extension produced by a given force depends on other factors. 
For example, the extension of a wire depends on its length and diameter as well as the 
type of material. In order to compare materials a quantity is defined which enables the 
extensions to be calculated if the dimensions of a specimen of a material are known. 
This quantity is called the Young modulus.

When an object has its shape or size changed by forces acting on it, strain is produced 
in the object. The strain is a measure of the extent of the deformation. When a tensile 
force acts on an object such as a wire or spring the deformation is a change in length. 

Questions
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6
If an object of original length Lo is extended by an amount e, the tensile strain (ε) is 
defined as

strain = extension
original length

ε = e/Lo

Strain is the ratio of two lengths and does not have a unit.

The strain produced within an object is caused by a stress. In our case, we are dealing 
with changes in length and so the stress is referred to as a tensile stress. When a tensile 
force F acts normally to an area A, the stress (σ) is given by

stress = 
force

area normal to the force

σ = F/A

The unit of tensile stress is newton per square metre (N m–2). This unit is also the unit of 
pressure and so an alternative unit for stress is the pascal (Pa).

In Figure 6.2, we plotted a graph of load against extension. Since load is related to stress 
and extension is related to strain, a graph of stress plotted against strain would have 
the same basic shape, as shown in Figure 6.3. Once again, there is a straight line region 
between the origin and P, the limit of proportionality. In this region, changes of strain 
with stress are proportional.

0

st
re

ss

strain

P

▲ Figure 6.3	Stress–strain	graph

In the region where the changes are proportional, it can be seen that

stress ∝ strain

or, removing the proportionality sign,

stress = E × strain

The constant E is known as the Young modulus of the material.

Young modulus E = 
stress
strain

provided the limit of proportionality is not exceeded.

The unit of the Young modulus is the same as that for stress because strain is a ratio and 
has no unit. Hence the unit of E is the newton per square metre (N m–2) or the pascal (Pa).

This definition for the Young modulus can be used to derive the expression

E = (F/A) × (Lo/e) = (FLo)/(Ae)

This expression is used to determine the Young modulus of a metal.
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6
The Young modulus of a metal in the form of a wire may be measured by applying loads 
to a wire and measuring the extensions caused. The original length and the cross-
sectional area must also be measured. A suitable laboratory arrangement is shown in 
Figure 6.4. A copper wire is often used. This is because, for wires of the same diameter 
under the same load, a copper wire will give larger, more measurable, extensions than a 
steel wire. (Why is this?) A paper flag with a reference mark on it is attached to the wire 
at a distance of approximately one metre from the clamped end. The original length Lo is 
measured from the clamped end to the reference mark, using a metre rule. The diameter 
d of the wire is measured using a micrometer screw gauge, and the cross-sectional area A 
calculated from A = 1

4
πd2. Extensions e are measured as masses m are added to the mass-

carrier. (Think of a suitable way of measuring these extensions.) The load F is calculated 
from F = mg. A graph of F (y-axis) against e (x-axis) has gradient EA/Lo, so the Young 
modulus E is equal to gradient × (Lo/A). This method is only applicable where Hooke’s 
law is valid and the graph obtained is a straight line. Care should be taken not to exceed 
the limit of proportionality when extending the wire.

clamp wire

pulley

masses

paper flag with
reference mark

▲	 Figure	6.4 Simple experiment to measure the Young modulus of a wire

Some values of the Young modulus for different materials are shown in Table 6.1.

material

Young 
modulus  
E/Pa

aluminium 7.0 × 1010

copper 1.1 × 1011

steel 2.1 × 1011

glass 4.1 × 1010

rubber 5.0 × 108

▲	 Table	6.1 Young modulus 
for different materials

WORKED	EXAMPLE	6B

A steel wire of diameter 1.0 mm and length 2.5 m is suspended from a fixed point 
and a mass of weight 45 N is suspended from its free end. The Young modulus of the 
material of the wire is 2.1 × 1011 Pa. Assuming that the limit of proportionality of the 
wire is not exceeded, calculate:
a the applied stress
b the strain
c the extension of the wire.

Answers
a area = π × (0.5 × 10–3)2

 = 7.9 × 10–7 m2

stress = force/area
 = 45/7.9 × 10–7

 = 5.7 × 107 Pa
b strain = stress/Young modulus

 = 5.7 × 107/2.1 × 1011

 = 2.7 × 10–4

c extension = strain × length
 = 2.7 × 10–4 × 2.5
 = 6.8 × 10–4 m
 = 0.68 mm
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4 A copper wire of diameter 1.78 mm and length 1.40 m is suspended from a fixed 

point and a mass of weight 32.0 N is suspended from its free end. The Young 
modulus of the material of the wire is 1.10 × 1011 Pa. Assuming that the limit of 
proportionality of the wire is not exceeded, calculate:

a the applied stress
b the strain
c the extension of the wire.

5 An elastic band of area of cross-section 2.0 mm2 has an original length of 8.0 cm. 
When stretched by a force of 0.40 N, its length becomes 8.3 cm. Calculate the Young 
modulus of the elastic.

6.2 Elastic and plastic behaviour
When an object has its shape or size changed by forces acting on it a deformation is said 
to have been produced. Figure 6.5 shows the force against extension graph for a wire. 
For small forces, when the force is removed, the wire returns to its original length. 
The wire is said to have undergone an elastic deformation.

In an elastic deformation, an object returns to its original shape and size when the 
force on it is removed.

The point E on Figure 6.5 is referred to as the elastic limit and is usually just beyond 
the point P the limit of proportionality.

The elastic limit is the maximum force that can be applied to a wire/spring such 
that the wire/spring returns to its original length when the force is removed.

If the force is increased greatly, the spring will change its shape or size permanently. 
The wire/spring is deformed permanently and the deformation is said to be plastic for 
points beyond E. The graph in Figure 6.5 follows the dashed line as the force is removed. 
At point B the wire has a permanent extension when the force is zero.

In a plastic deformation, an object does not return to its original shape and size 
when the force on it is removed.

Elastic	potential	energy
Work has to be done by the force acting on the object to cause its deformation and hence 
produce a strain. The work done to produce the strain is stored in the object as potential 
energy. This particular form of potential energy is called strain potential energy, or 
simply strain energy. All the stored potential energy is recovered when the force is 
removed from the object provided the force applied is within the elastic limit. The stored 
potential energy is then called elastic potential energy.

Elastic potential energy (strain energy) is energy stored in an object due to 
change of shape or size, which is completely recovered when the force causing 
deformation is removed.

The work done by a force that is greater than the elastic limit is stored as potential energy 
in the object but the energy is not completely recovered when the force is removed.

Consider the spring shown in Figure 6.1. To produce a final extension e, the force applied 
at the lower end of the spring increases with extension from zero to a value F. Provided 
the spring is deformed within its limit of proportionality, the extension is directly 
proportional to this maximum force and the average force is 1

2
F. The work done W by the 

force is therefore

W = average force × extension (see Topic 5.1)

 = 1
2
Fe

fo
rc

e

B

P
E

0 extension

▲ Figure 6.5	Force	against	
extension	graph

Questions
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6.2 Elastic and plastic behaviour

The work done is equal to the elastic potential energy stored in the spring, Ep. Hence for 
a spring deformed within its limit of proportionality,

Ep = 1
2
Fe

However, the force constant k is given by the equation

F = ke

Therefore, substituting for F,

Ep = 1
2
ke2

The energy is in joules if k is in newtons per metre and e is in metres.

A graph of force (y-axis) against extension (x-axis) enables the work done to be found 
even when the graph is not linear (see Figure 6.6). We have shown that for a spring 
deformed within its limit of proportionality, work done is given by

W = 1
2
Fe

The expression 1
2
Fe represents the area between the straight line on Figure 6.6 and the 

x-axis. This relationship only applies when the extension is proportional to the force, 
but the work done in deforming is still given by the area under the line if the graph is 
curved. This means that work done is represented by the area under the line on a graph 
of force (y-axis) plotted against extension (x-axis).

fo
rc

e

extension

F

area 1 Fe2

e0

▲ Figure 6.6	Work	done	is	given	by	the	area	under	the	graph.

For any deformation, the area under the force–extension graph represents the 
work done.

The work done and hence the elastic potential energy is area under the graph (1
2
Fe). 

The force (in N) × extension (in m) gives the work done (energy stored) in J, provided 
the limit of proportionality is not exceeded.

WORKED EXAMPLE 6C

A spring has a spring constant 65 N m –1 and is extended within the limit of 
proportionality by 1.2 cm. Calculate the elastic potential energy stored in the spring.

Answer
elastic potential energy W = 1

2
 ke2

 = 1
2
 × 65 × (1.2 × 10–2)2

 = 4.7 × 10–3 J

6 Explain what is meant by extended elastically.

7 A wire has a force constant of 5.5 × 104 N m–1. It is extended within the limit of 
proportionality by 1.4 mm. Calculate the elastic potential energy stored in the wire.

8 A rubber band has a force constant of 180 N m–1. The work done in extending the 
band is 0.16 J. Calculate the extension of the band.

Questions
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6
SUMMARY

» Forces on an object can cause tensile deformation 
(stretching) or compressive deformation 
(squeezing).

» The limit of proportionality is the point up to which 
the force is proportional to the extension.

» Hooke’s law states extension is proportional to 
force provided the limit of proportionality is not 
exceeded.

» The spring constant (force constant) k is the ratio 
of force to extension, k = F/x.

» Tensile strain = extension/original length.
» Tensile stress = force/cross-sectional area; stress 

has units N m–2 or Pa.
» The Young modulus of a material is defined as 

Young modulus = stress/strain; the units of the 
Young modulus are N m–2, or Pa.

» The Young modulus of a metal in the form of a 
wire can be found by applying loads to a wire and 
measuring the extensions caused. The original 
length and diameter of the wire are also measured. 
The Young modulus is determined using the 
gradient of a force-extension graph or directly 
from the gradient of the stress/strain curve.

» An elastic deformation occurs when an object 
returns to its original shape and size when the 
force is removed from it.

» In a plastic deformation, an object does not return 
to its original shape and size when the force on it is 
removed.

» The elastic limit is the maximum force that can be 
applied to a wire/spring such that the wire/spring 
returns to its original length when the force is 
removed.

» Elastic potential energy is energy stored in an 
object due to change of shape or size that is 
completely recovered when the force causing 
deformation is removed.

» Elastic potential energy, Ep = 12Fe = 12ke2 for an object 
deformed within its limit of proportionality.

» The area under the force–extension graph 
represents the work done. This applies for 
forces within the elastic limit and greater than 
the elastic limit.

END OF TOPIC QUESTIONS

1 What are the SI base units of the spring constant?

 A N B N m C N m−1 D N m−2

2 A uniform metal wire is fixed at one end so that it hangs vertically from the ceiling. 
A load of 5 kg is placed on the lower end and the wire extends. The original length 
of the wire was 1.5 m. The diameter of the wire is 0.40 mm and the metal of the 
wire has a Young modulus of 2 × 1011 N m−2. What is the extension of the wire?

 A 0.07 mm B 0.7 mm C 0.3 mm D 3 mm

3 Fig. 6.7 shows the extension of a wire as forces from 0 to 160 N are applied. What is 
the work done extending the wire with forces from 80 N to 160 N?

 A 0.48 J B 0.72 J C 1.4 J D 1.9 J

0 6.0 12.0

80

160

120

40

fo
rc

e
/N

extension /mm
8.0 10.04.02.0

▲	 Figure 6.7
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End of topic questions

4 A spring has an original length of 12.4 cm. When a load of 4.5 N is suspended from 
the spring, its length becomes 13.3 cm. Calculate:
a the spring constant of the spring,
b the length of the spring for a load of 3.5 N.

5 The elastic cord of a catapult has a force constant of 700 N m–1. Calculate the 
elastic potential energy stored in the elastic cord when it is extended by 15 cm.

6 Two wires each have length 1.8 m and diameter 1.2 mm. One wire has a Young 
modulus of 1.1 × 1011 Pa and the other 2.2 × 1011 Pa. One end of each wire is 
attached to the same fixed point and the other end of each wire is attached to the 
same load of 75 N so that each has the same extension. Assuming that the limit of 
proportionality of the wires is not exceeded, calculate the extension of the wires.

7 Explain what is meant by plastic deformation.

8 a Explain what is meant by elastic potential energy (strain energy). [2]
b A spring that obeys Hooke’s law has a spring constant k.
 Show that the energy E stored in the spring when it has been extended  

elastically by an amount x is given by E = 12 kx 2. [3]
c A light spring of unextended length 14.2 cm is suspended vertically from a  

fixed point, as shown in Fig. 6.8.
 A mass of weight 3.8 N is hung from the end of the spring, as shown in Fig. 6.9. 

The length of the spring is now 16.3 cm.
 An additional force F then extends the spring so that its length becomes 

17.8 cm, as shown in Fig. 6.10.
 The spring obeys Hooke’s law and the elastic limit of the spring is not exceeded.

i Show that the spring constant of the spring is 1.8  N cm–1. [1]
ii For the extension of the spring from a length of 16.3 cm to a length of 17.8 cm,

1 calculate the change in the gravitational potential energy of the  
mass on the spring, [2]

2 show that the change in elastic potential energy of the spring  
is 0.077 J, [1]

3 determine the work done by the force F. [1]

Cambridge International AS and A Level Physics (9702) Paper 22 Q4 Oct/Nov 2009

9 a Define, for a wire:
i stress, [1]
ii strain. [1]

b A wire of length 1.70 m hangs vertically from a fixed point, as shown in Fig. 6.11.
 The wire has cross-sectional area 5.74 × 10–8 m2 and is made of a material that  

has a Young modulus of 1.60 × 1011 Pa. A load of 25.0 N is hung from the wire.
i Calculate the extension of the wire. [3]
ii The same load is hung from a second wire of the same material. This wire 

is twice the length but the same volume as the first wire. State and explain 
how the extension of the second wire compares with that of the first wire. [3]

Cambridge International AS and A Level Physics (9702) Paper 21 Q4 May/June 2011

10 a State Hooke’s law. [1]
b The variation with extension x of the force F for a spring A is shown in Fig. 6.12.
 The point L on the graph is the elastic limit of the spring.

17.8 cm

3.8 NF

fixed point

▲	 Figure 6.10

wire

25.0 N

▲	 Figure 6.11

14.2 cm

fixed point

▲	 Figure 6.8

16.3 cm

3.8 N

fixed point

▲	 Figure 6.9
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0
2 4 6 8 10

2

4

F 
/N

x /10–2
 m

6

8

L

i Describe the meaning of elastic limit. [1]
ii Calculate the spring constant kA for spring A. [1]
iii Calculate the work done in extending the spring with a force of 6.4 N. [2]

c A second spring B of spring constant 2kA is now joined to spring A, as shown in 
Fig. 6.13.

 A force of 6.4 N extends the combination of springs.
 For the combination of springs, calculate:

i the total extension, [1]
ii the spring constant. [1]

Cambridge International AS and A Level Physics (9702) Paper 21 Q6 Oct/Nov 2011

11	 a For the deformation of a wire under tension, define:
i stress, [1]
ii strain. [1]

b A wire is fixed at one end so that it hangs vertically. The wire is given an 
extension x by suspending a load F from its free end. The variation of F with x is 
shown Fig. 6.14.

0.20.1 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

5

3

1

8

7

F 
/N

x /mm

▲  Figure	6.12

spring A

spring B

6.4 N

▲  Figure	6.13

▲  Figure	6.14
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 The wire has cross-sectional area 9.4 × 10–8 m2 and original length 2.5 m.

i Describe how measurements can be taken to determine accurately the  
cross-sectional area of the wire. [3]

ii Determine the Young modulus E of the material of the wire. [2]
iii Use Fig. 6.14 to calculate the increase in the energy stored in the wire  

when the load is increased from 2.0 N to 4.0 N. [2]
c The wire in b is replaced by a new wire of the same material. The new wire 

has twice the length and twice the diameter of the old wire. The new wire also 
obeys Hooke’s law. On a copy of Fig. 6.14, sketch the variation with extensions x 
of the load F for the new wire from x = 0 to x = 0.80 mm. [2]

Cambridge International AS and A Level Physics (9702) Paper 22 Q3 Feb/March 2018

12 a Define the Young modulus of a material. [1]
b A metal rod is compressed, as shown in Fig. 6.15.

L

FF

rod

▲	 Figure 6.15

 The variation with compressive force F for the length L of the rod is shown in 
Fig. 6.16.

0 2010 30 40 50 60 70 80 90
145

147

149

151

150

148

146

L 
/m

m

F /kN

▲	 Figure 6.16

 Use Fig. 6.16 to:
i determine the spring constant k of the rod, [2]
ii determine the strain energy stored in the rod for F = 90 kN. [3]

c The rod in b has cross-sectional area A and is made of metal of Young  
modulus E. It is now replaced by a new rod of the same original length. The new 
rod has cross-sectional area A/3 and is made of metal of Young modulus 2E. The 
compression of the new rod obeys Hooke’s law. On a copy of Fig. 6.16, sketch  
the variation with F of the length L for the new rod from F = 0 to F = 90 kN. [2]

Cambridge International AS and A Level Physics (9702) Paper 23 Q4 May/June 2018

End of topic questions
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Waves

Learning outcomes
By the end of this topic, you will be able to:
7.1 Progressive waves

1  describe what is meant by wave motion as 
illustrated by vibration in ropes, springs and 
ripple tanks

2  understand and use the terms displacement, 
amplitude, phase difference, period, 
frequency, wavelength and speed

3  understand the use of the time-base and 
y-gain of a cathode-ray oscilloscope (CRO) 
to determine frequency and amplitude

4  derive, using the definitions of speed, 
frequency and wavelength the wave equation 
v = f k

5 recall and use the equation v = f k
6  understand that energy is transferred by a 

progressive wave
7  recall and use intensity = power/area and 

intensity is proportional to (amplitude)2 for a 
progressive wave

7.2 Transverse and longitudinal waves
1 compare transverse and longitudinal waves
2  analyse and interpret graphical 

representations of transverse and 
longitudinal waves

7.3 Doppler effect for sound waves
1  understand that when a source of sound 

waves moves relative to a stationary 
observer, the observed frequency is 
different from the source frequency

2  use the expression fo = fsv/(v ± vs) for the 
observed frequency when a source of sound 
waves moves relative to a stationary observer

7.4 Electromagnetic spectrum
1  state that all electromagnetic waves are 

transverse waves that travel with the same 
speed c in free space

2  recall the approximate range of wavelengths 
in free space of the principal regions of the 
electromagnetic spectrum from radio waves 
to γ-rays

3  recall that wavelengths in the range 
400–700 nm in free space are visible to the 
human eye

7.5 Polarisation
1  understand that polarisation is a phenomenon 

associated with transverse waves
2  recall and use Malus’s law (I = I0 cos2 θ ) to 

calculate the intensity of a plane polarised 
electromagnetic wave after transmission 
through a polarising filter or a series of 
polarising filters

Starting points
★ The basic properties of waves, such as reflection, refraction, diffraction and 

interference.
★ The electromagnetic spectrum.
★ Visible light is a small part of the electromagnetic spectrum with each colour 

having a different frequency.

7.1 Progressive waves: transverse and longitudinal 
waves
This topic will introduce some general properties of waves. We will meet two broad 
classifications of waves, transverse and longitudinal, based on the direction in which 
the particles vibrate relative to the direction in which the wave transmits energy. We will 

	 7 
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define terms such as amplitude, wavelength and frequency for a wave, and derive the 
relationship between speed, frequency and wavelength. We will look at demonstrations 
of some properties of waves, such as reflection and refraction.

Wave motion is a means of moving energy from place to place. For example, electromagnetic 
waves from the Sun carry the energy that plants need to survive and grow. The energy 
carried by sound waves causes our ear drums to vibrate. The energy carried by seismic 
waves (earthquakes) can devastate vast areas, causing land to move and buildings to collapse. 
Waves which transfer energy from place to place without the transfer of matter are called 
progressive waves.

Vibrating objects act as sources of waves. For example, a vibrating tuning fork sets the 
air close to it into oscillation, and a sound wave spreads out from the fork. For a radio 
wave, the vibrating objects are electrons.

There are two main groups of waves. These are transverse waves and longitudinal waves.

A transverse wave is one in which the vibrations of the particles in the wave are at 
right angles to the direction in which the energy of the wave is travelling.

Figure 7.1 shows a transverse wave moving along a rope. The particles of the rope vibrate 
up and down, while the energy travels at right angles to this, from A to B. There is no 
transfer of matter from A to B. Examples of transverse waves are electromagnetic waves 
which include light waves, surface water waves and secondary seismic waves (S-waves).

movement of
energy

vibration
of rope

A B

▲ Figure 7.1 Transverse wave on a rope

A longitudinal wave is one in which the direction of the vibrations of the particles 
in the wave is along or parallel to the direction in which the energy of the wave is 
travelling.

Figure 7.2 shows a longitudinal wave moving along a stretched spring (a ‘slinky’). The coils 
of the spring vibrate along the length of the spring, whilst the energy travels along the 
same line, from A to B. Note that the spring itself does not move from A to B. Examples of 
longitudinal waves include sound waves and primary seismic waves (P-waves).

movement of
energy

vibration
of coils

A B

▲ Figure 7.2 Longitudinal wave on a slinky spring

Graphical representation of waves

The displacement of a particle in a wave is its distance in a specified direction 
from its rest/equilibrium position.

Displacement is a vector quantity; it can be positive or negative. A transverse wave 
may be represented by plotting displacement y on the y-axis against distance x 
along the wave, in the direction of energy travel, on the x-axis. This is shown in 
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Figure 7.3. It can be seen that the graph is a snapshot of what is actually observed to 
be a transverse wave. The crest at C and the trough at D will be seen to move to the 
right with time transferring energy to the right. The particles at C and D will move 
towards zero displacement at right angles to the direction the energy is travelling.

0

A

wavelength

x

B

C

D

amplitude

y

di
sp

la
ce

m
en

t

movement of energy

▲ Figure 7.3 Displacement–distance graph for a transverse wave

For a longitudinal wave, the displacement of the particles is along or parallel to the 
direction of energy travel. However, if these displacements are plotted on the y-axis of 
a graph of displacement against distance, the graph has exactly the same shape as for a 
transverse wave (see Figure 7.3). This is very useful, in that one graph can represent both 
types of wave. Using this graph, wave properties may be treated without reference to the 
type of wave.

The amplitude of the wave motion is defined as the maximum displacement of a 
particle in the wave from its rest/equilibrium position.

It can be seen in Figure 7.3 that the wave repeats itself after a certain distance. That is, 
the wave can be constructed by repeating a particular section of the wave. The smallest 
distance that shows the section of the wave that is repeated is called the wavelength.

The motion of any particle in the wave from the maximum positive displacement (a crest) 
to a maximum negative displacement (a trough) back to a maximum positive displacement 
is called a cycle or oscillation. Note that the distance moved by a particle in the wave from 
crest to trough is twice the amplitude and in one oscillation the particle moves a distance 
that is four times the amplitude.

Another way to represent both waves is to plot a graph of displacement y of a particle 
in the wave against time t. This is shown in Figure 7.4. Again, the wave repeats itself, 
in this case after a certain interval of time. This is the time for one complete cycle or 
oscillation and is called the period T of the wave.

The period of the wave is the time for a particle in the wave to complete one 
oscillation or one cycle.

0

y

amplitude

period

t

▲ Figure 7.4 Displacement–time graph for a wave
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The number of oscillations (cycles) per unit time is called the frequency f of the wave.

The displacement and amplitude are measured in mm, m or other units of length. 
Period is measured in seconds (s). Frequency has the unit per second (s-1) or hertz (Hz). 
The period T = 1/f.

A term used to compare the displacements and relative motions of particles in a wave is 
phase difference. Two particles that vibrate together are said to be in phase. In Figure 7.3 
the particles at A and B move in phase as they have the same displacements at the same 
times and are moving in the same direction. Both particles will move down towards the rest 
position (zero displacement) as the wave moves towards the right. Particles C and D are half 
a cycle out of phase as C is at a crest when D is at a trough. Particle C moves down towards 
the rest position (zero displacement) and particle D moves up towards the rest position.  
The phase difference is generally stated as an angle expressed in radians or degrees.

One cycle in the wave is represented by 2π radians or 360°.

The radian is included in the following sections as angles and phase differences may be 
given in this unit. In AS Level, questions are set where angles and phase differences are 
given in degrees, and answers may be given in degrees or radians. The radian is defined 
in Topic 12.1.

To convert from a fraction of a cycle to an angle the fraction is multiplied by 2π for 
radians or 360° for degrees. Hence in Figure 7.3 C and D have a phase difference of  
π radians or 180°.

The wavelength is the minimum distance between particles which are vibrating in 
phase with each other.

The wavelength is, therefore, the minimum distance between two crests or two troughs.

For two-dimensional waves the term wavefront is used to join points that are in 
phase. The ripples seen on the surface of water in a ripple tank are wavefronts  
(see Figures 7.6 and 7.7 on page 116).

The wavelength is also the distance between adjacent wavefronts. It is the distance moved 
by the wavefront or the energy during one cycle/oscillation of the source of the waves.

The usual symbol for wavelength is λ, the Greek letter lambda.

The term phase difference is also used to describe the relative positions of the crests 
or troughs of two different waves of the same frequency. When the crests and troughs of 
the two waves are aligned, the waves are said to be in phase. When crests and troughs 
are not aligned the waves are said to have a phase difference. When a crest and a trough 
of two waves are aligned the waves are said to be in antiphase. Thus, when waves are 
out of phase with a crest aligned with a trough, one wave is half a cycle behind the 
other. In this case, the phase difference between waves that are exactly out of phase (in 
antiphase) is π radians or 180°. (Phase difference is also discussed in Topic 8 for the 
superposition of two progressive waves.)

Consider Figure 7.5 (overleaf), in which there are two waves of the same frequency, but 
with a phase difference between them. The period T corresponds to a phase angle of 2π 
rad or 360°. The two waves are out of step by a time t. Thus, phase difference is equal to 
2π(t/T) rad = 360(t/T)°. A similar argument may be used for waves of wavelength λ which 
are out of step by a distance x. In this case the phase difference is 2π(x/λ) rad = 360(x/λ)°.
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▲ Figure 7.5 Phase difference

1 Two waves of the same frequency have a time period of 3.0 s. The two waves are out 
of phase by a time difference of 0.5 s. Calculate the phase difference between the two 
waves in degrees.

Wave equation
The speed of a progressive wave is the distance moved per unit time by the wavefronts 
(or crests) or wave energy. The definition of wavelength λ is the minimum distance 
between wavefronts. Hence in one cycle of the source the wave energy moves a 
distance λ. The time taken for one cycle is the time period T. Referring to Topic 2, speed 
v is the distance moved per unit time. Therefore,

v = λ/T

If f is the frequency of the wave, then f = 1/T. Therefore,

v = fλ

or

speed = frequency × wavelength

This is an important relationship between the speed of a wave and its frequency and 
wavelength.

Intensity
One of the characteristics of a progressive wave is that it carries energy. The amount of 
energy passing through unit area per unit time is called the intensity of the wave.

The intensity of a wave is the power per unit area.

WORKED EXAMPLE 7A

In Figure 7.5 the time period T is 2.0 s and the time t is 0.25 s. Calculate the phase 
difference between the two waves in degrees.

Answer
The fraction of time t to the period T is 0.25/2 = 0.125.

Hence the phase difference is 0.125 × 360 = 45°.

Question

482807_07_CI_AS_Phy_SB_3e_110-132.indd   114 31/05/20   10:14 PM



115

7.1 Progressive w
aves: transverse and longitudinal w

aves

7
The intensity is proportional to the square of the amplitude of a wave for constant 
frequency. Thus, doubling the amplitude of a wave increases the intensity of the 
wave by a factor of four. The intensity also depends on the frequency: intensity is 
proportional to the square of the frequency.

For a wave of frequency f and amplitude A, the intensity I is proportional to A2f2.

If the waves from a point source spread out equally in all directions, a spherical wave 
is produced. As the wave travels further from the source, the energy it carries passes 
through an increasingly large area. Since the surface area of a sphere is 4πr2, the 
intensity is W/4πr2, where W is the power of the source. The intensity of the wave thus 
decreases with increasing distance from the source. The intensity I is proportional to  
1/r2, where r is the distance from the source.

This relationship assumes that there is no absorption of wave energy.

WORKED EXAMPLE 7B

1 A tuning fork of frequency 170 Hz produces sound waves of wavelength 2.0 m.
 Calculate the speed of sound.
2 The amplitude of a wave in a rope is 15 mm. If the amplitude were changed to 

20 mm, keeping the frequency the same, by what factor would the power carried 
by the rope change?

Answers
1 Using v = fλ, we have v = 170 × 2.0 = 340 m s−1.
2 Intensity is proportional to the square of the amplitude. Here the amplitude has 

been increased by a factor of 20/15, so the power carried by the wave increases 
by a factor of (20/15)2 = 1.8.

2 Water waves of wavelength 0.080 m have a frequency 5.0 Hz. Calculate the speed of 
these water waves.

3 The speed of sound is 340 m s−1. Calculate the wavelength of the sound wave 
produced by a violin when a note of frequency 500 Hz is played.

4 A sound wave has twice the intensity of another sound wave of the same frequency. 
Calculate the ratio of the amplitudes of the waves.

Properties of wave motions
Although there are many different types of waves (light waves, sound waves, 
electromagnetic waves, mechanical waves, etc.) there are some basic properties which 
they all have in common. All waves can be reflected and refracted. All waves can be 
diffracted, and can produce interference patterns (diffraction and interference will be 
discussed in Topic 8).

These properties may be demonstrated using a ripple tank similar to that shown in 
Figure 7.6 (overleaf). As the motor turns, the wooden bar vibrates, creating ripples on 
the surface of the water. A lamp shines light onto the ripples from above. This creates 
shadows of the waves on the viewing screen below the tank. The shadows show the 
shape and movement of the waves. Each dark shadow line joins points that are in phase. 
These lines represent a wavefront. The minimum distance between the wavefronts is 
the wavelength of the water waves. A stroboscope can be used to ‘freeze’ the pattern on 
the screen. The stroboscope emits flashes of light at a given frequency. The frequency is 
adjusted until it is the same as the frequency of the waves and the shadows are seen in 
fixed positions.

Questions
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▲ Figure 7.6 Ripple tank

Figure 7.7 illustrates the pattern of wavefronts produced by a low-frequency vibrator and 
one of higher frequency. Note that for the higher frequency the wavelength is shorter, 
since wave speed is constant and v = fλ.

wavelength

high frequency

wavelength

low frequency

vibrating motor

vibrating
wooden
bar

▲ Figure 7.7 Ripple tank patterns for low and high frequency vibrations

Circular waves may be produced by replacing the vibrating bar with a small dipper, or 
by allowing drops of water to fall into the ripple tank. A circular wave is illustrated in 
Figure 7.8. This pattern is characteristic of waves spreading out from a point source.

point source of disturbance

circular waves 

▲ Figure 7.8 Ripple tank pattern for a point source
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We shall now see how the ripple tank may be used to demonstrate the wave properties 
of reflection and refraction.

Reflection
As the waves strike a plane barrier placed in the water, they are reflected. The angle 
of reflection equals the angle of incidence, and there is no change in wavelength  
(see Figure 7.9a). If a curved barrier is used, the waves can be made to converge or 
diverge (Figure 7.9b).

plane
barrier

curved
barrier

wavefront wavefront

r
i

b)a)

▲ Figure 7.9 Ripple tank pattern showing reflection at a) a plane surface and b) a curved one

Refraction
If a glass block is submerged in the water, this produces a sudden change in the depth 
of the water. The speed of surface ripples on water depends on the depth of the water: 
the shallower the water, the slower the speed. Thus, the waves move more slowly as 
they pass over the glass block. The frequency of the waves remains constant, and so the 
wavelength decreases. If the waves are incident at an angle to the submerged block, they 
will change direction, as shown in Figure 7.10.

The change in direction of a wave due to a change in speed is called refraction.

deep
water

boundary

shallow
water

▲ Figure 7.10 Ripple tank pattern showing refraction

The determination of the frequency and amplitude of sound 
using a calibrated CRO
A cathode ray oscilloscope (CRO) with a calibrated time-base may be used to determine 
the frequency of sound. A method of measuring the frequency of sound waves is 
illustrated in Figure 7.11. A signal generator and loudspeaker are used to produce a note 
of a single frequency. The microphone is connected to the Y-plates of the CRO.

microphone

loudspeaker

signal generator

oscilloscope

Y sensitivity

V/div s/div

time-base

▲ Figure 7.11 Measuring the frequency and amplitude of sound using a CRO
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The microphone detects the sound and a trace on the CRO can be obtained by 
adjusting the Y-plate sensitivity and the time-base settings. A typical trace is shown 
in Figure 7.12.

1 cm

T

1 cm

▲ Figure 7.12 Measurement of the time period and amplitude from the CRO trace

The distance between peaks or troughs is measured using the scale on the x-axis on 
the CRO display. The time-base setting is used to determine the time period T and 
frequency of the sound. The calculated value can be compared with that shown on the 
signal generator.

The amplitude of the sound is represented by the amplitude of the trace on the CRO. 
The distance from crest to trough along the y-axis is measured and divided by two.  
The Y-sensitivity, usually given in V cm−1, is used to determine the amplitude of the wave 
shown on the CRO in volts. The intensity of different sounds can be compared by the 
value obtained for the amplitude on the CRO. Provided the detector produces a voltage 
that is proportional to the intensity of the sound, the amplitude of the trace on the CRO 
is directly related to the intensity. For constant frequency the intensity is proportional 
to the (amplitude)2. For example, if the intensity of the sound wave is doubled, the 
amplitude of the sound wave is increased by the square root of two and the trace on the 
CRO shows the same increase.

The CRO can be used to measure the frequency and compare amplitudes of other waves 
using a suitable detector in place of the microphone.

WORKED EXAMPLE 7C

1 The time-base setting for the CRO used to obtain the trace in Figure 7.12 is 
2.0 ms cm−1. Determine for the sound:
a the time period
b the frequency.

2 The Y-sensitivity for the CRO is set on 2.0 V cm−1. Determine the voltage 
amplitude of the trace shown on the CRO.

Answers
1 a The distance for a time period is 3.0 cm.

 Hence the period = 3.0 × 2.0 × 10− 3 = 6.0 × 10−3 s

b The frequency = 1/time period = 1/6.0 × 10−3 = 170 Hz

2 The amplitude of the trace is 1.4 cm and hence the voltage amplitude is  
1.4 × 2.0 = 2.8 V.
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5 The time-base on a CRO is set on 0.50 ms cm−1. The trace obtained for a sound wave 

shows three complete time periods in 7.2 cm. Calculate:

a the time period

b the frequency.

6 Make a copy of the trace shown in Figure 7.12. Draw a second trace on your copy 
for a sound wave that has half the intensity of the original sound but with the same 
frequency.

7.2 Doppler effect
The whistle of a train or the siren of a police car appears to increase in frequency 
(pitch) as it moves towards a stationary observer. The frequency change due to the 
relative motion between a source of sound or light and an observer is known as the 
Doppler effect.

When the observer and source of sound are both stationary, the number of waves per 
second reaching the observer will be the same frequency as the source (see Figure 7.13).

source

stationary

observer

stationaryλ λ λ λ

▲ Figure 7.13 The source emits waves of wavelength λ. The observer is stationary and 
receives waves with the same wavelength λ.

When the source moves towards the observer the effect is to shorten the wavelength of 
the waves reaching the observer (see Figure 7.14).

moving
source

vs

P

stationary
observer

▲ Figure 7.14 Source of sound moving towards a stationary observer

Let v be the speed of sound in air. A source of sound has a frequency fs and wavelength 
λ. The source moves towards an observer at a speed vs.

Questions
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The period of oscillation of the source of sound is T (= 1/fs). In the time of one oscillation 
the source moves towards the observer a distance vsT. Hence the wavelength is shortened 
by this distance. The wavelength of the sound received by the observer is λ − vsT.

Hence the frequency observed fo = v/(λ − vsT) = v/(v/fs − vs/fs)

fo = 
fsv

(v − vs)
The source would move away from a stationary observer at position P on the left-hand 
side of Figure 7.14. The observed wavelengths would lengthen.

For a source of sound moving away from an observer the observed frequency can be 
shown to be

fo = 
fsv

(v + vs)
The observed frequency fo when a source of sound waves moves at speed vs relative to a 
stationary observer is

fo = 
fsv

 (v ± vs)

The observed frequency is greater than the source frequency when the source 
moves towards the observer and the observed frequency is less than the source 
frequency when the source moves away from the observer.

The above expressions apply only when the source of waves is sound. However, a change 
of frequency (Doppler shift) is observed with all waves, including light.

EXTENSION

In astronomy, the wavelength tends to be measured rather than the frequency. If the 
measured wavelength of the emitted light (see Topic 25) is less than that measured 
for a stationary source, then the distance between the source (star) and detector is 
decreasing (blueshift). If the measured wavelength is greater than the value of a  
stationary source, then the source is moving away from the detector (redshift). 
The blue and red shifts are referred to in this way as red has the longest wavelength 
in the visible spectrum and blue the shortest.

WORKED EXAMPLE 7D

A police car travels towards a stationary observer at a speed of 15 m s−1. The siren 
on the car emits a sound of frequency 250 Hz. Calculate the observed frequency. 
The speed of sound is 340 m s−1.

Answer

observed frequency fo = 
fsv

(v − vs)

= 250 × 
340

(340 − 15)
= 260 Hz

7 The sound emitted from the siren of an ambulance has a frequency of 1500 Hz. 
The speed of sound is 340 m s−1. Calculate the difference in frequency heard by 
a stationary observer as the ambulance travels towards and then away from the 
observer at a speed of 30 m s−1.

Question
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7.3 Electromagnetic spectrum
Electromagnetic waves are progressive transverse waves (see Topic 7.1). However, unlike 
other types of transverse wave they do not require a medium to travel through.

Electromagnetic (e.m.) waves show all the properties common to wave motions: they 
can be reflected and refracted. They can also be diffracted and they obey the principle of 
superposition and produce interference patterns (as we shall see in Topic 8).

In a vacuum (free space) all electromagnetic waves travel at the same speed,  
3.00 × 108 m s−1. However their speed is lower in other substances. When a wave  
slows down, its frequency is unaltered (since this depends on the wave source) but  
the wavelength will decrease (from v = fλ).

The complete electromagnetic spectrum has a continuous range of frequencies (or 
wavelengths) but may be divided into a series of regions based on the properties of 
electromagnetic waves in these regions, as illustrated in Figure 7.16. It should be noted 
that there is no clear boundary between regions.

Table 7.1 (overleaf) lists the wavelength range of the main regions of the electromagnetic 
spectrum in free space.

EXTENSION

Electromagnetic waves consist of electric and magnetic fields which oscillate at 
right angles to each other and to the direction in which the wave is travelling. 
This is illustrated in Figure 7.15.

oscillating
electric field

oscillating
magnetic field

direction of
transfer of
energy

▲ Figure 7.15 Oscillating electric and magnetic fields in an electromagnetic wave

Frequency/Hz

104 106 108 1010 1012 1014 1016 1018 1020 1022 1024

name:

application

radio waves
microwaves

infra-red

AM                    FM radar lasersTV

Wavelength/m

104 102 100 10–2 10–4 10–6 10–8 10–10 10–12 10–14 10–16

AM                     FM TV radar lasers
medical

diagnosis medical

X-rays

gamma rays

ultra-violetvisible

application:

▲ Figure 7.16 The electromagnetic spectrum
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radiation approximate wavelength range/m

γ-rays 10−10–10−16 and shorter

X-rays 10−9–10−12 and shorter

ultraviolet 10−7–10−9

visible 4  ×  10−7– 7  ×  10−7

infrared 10−2–10−6

microwaves 10−3–10−1

radio waves 10−1–104 and longer

▲ Table 7.1 Wavelength range of the principal regions of the electromagnetic spectrum in 
free space

Visible light is just a small region of the electromagnetic spectrum with wavelengths of 
400–700 nm in free space, where 1 nm = 1 × 10−9 m (Topic 1). Blue light has a shorter 
wavelength than red light.

8 The speed of light is 3.00 × 108 m s−1. Calculate the frequency of red light of 
wavelength 650 nm. Give your answer in THz.

9 A beam of red light has an amplitude that is 2.5 times the amplitude of a second 
beam of the same colour. Calculate the ratio of the intensities of the waves.

10 Calculate the wavelength of microwaves of frequency 8.0 GHz.

7.4 Polarisation
Consider generating waves in a rope by moving your hand holding the stretched rope 
up and down, or from side to side. The transverse vibrations of the rope will be in just 
one plane – the vertical plane if your hand is moving up and down, or the horizontal 
plane if it moves from side to side. In each case the plane is that containing both 
the direction of vibration of the rope and the direction in which the wave energy is 
travelling. These vibrations are said to be plane polarised in either a vertical plane or 
a horizontal plane.

However, there are an infinite number of directions for the vibrations of the rope to 
be at right angles to the direction the wave energy is travelling (the condition for the 
wave produced to be a transverse wave). If the direction of the vibration of the rope 
is continually changed but kept at right angles to the direction of energy travel then 

Questions

WORKED EXAMPLE 7E

1 Calculate the frequency in MHz of a radio wave of wavelength 250 m.
 The speed of all electromagnetic waves is 3.00 × 108 m s−1.
2 Calculate the wavelength in nm of an X-ray wave of frequency 2.0 × 1018 Hz.

Answers
1 For a wave v = fλ

 f = 3.00 × 108

250
  = 1.2 × 106 Hz  
= 1.2 MHz

2 For a wave v = fλ
 λ = 3.00 × 108/2 × 1018  = 1.5 × 10−10  

= 0.15 nm
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the waves produced are said to be unpolarised. This is similar to that shown for 
unpolarised electromagnetic waves in Figure 7.18.

▲ Figure 7.17 Transverse waves on a rope

A polarised wave is a transverse wave in which vibrations occur in only one of the 
directions at right angles to the direction in which the wave energy is travelling.

The condition for a wave to be plane polarised is for the vibrations to be in just one plane, 
which contains the direction in which the wave energy is travelling.

If the rope passes through a vertical slot, then only if you move your hand up and down 
will the wave pass through the slot. This is illustrated in Figure 7.17. If the rope passes 
through a horizontal slot, only waves generated by a side-to-side motion of the hand will 
be transmitted. If the rope passes through a slot of one direction followed by another at 
right angles, the wave is totally blocked whether it was initially vibrating in the vertical 
or the horizontal plane. This is similar to that shown for electromagnetic waves in 
Figure 7.20a on page 125.

unpolarised electromagnetic wave
direction of
wave energy

wave vibrations are
in more than one plane

polarised electromagnetic wave

wave vibrations are
in one plane

direction of
wave energy

▲ Figure 7.18 Unpolarised and polarised electromagnetic waves
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Clearly, polarisation can apply only to transverse waves. In longitudinal waves the 
vibrations are parallel to the direction of wave travel, and whatever the direction of the 
slit, it would make no difference to the transmission of the waves.

The Sun and domestic light bulbs emit unpolarised light; that is, over a short period 
of time, the vibrations take place in many directions in a plane at right angles to the 
direction of the wave energy, instead of in a single direction of vibration required for 
plane-polarised electromagnetic waves (see Figure 7.18).

 Many radio waves, microwaves and television waves are plane polarised.

Polarising light waves
Some transparent materials, such as a Polaroid sheet (used in some types of sunglasses), 
allow vibrations of light to pass through in one direction only. A Polaroid sheet contains 
long chains of organic molecules aligned parallel to each other.

The Polaroid sheet acts as a polariser, producing plane-polarised light from light 
that was originally unpolarised. Figure 7.19 illustrates unpolarised light entering the 
polariser, and polarised light leaving it. The blue arrow in the polariser represents the 
direction of vibration of the light waves allowed by the polariser.

unpolarised
light

polariser

plane polarised
light

▲ Figure 7.19

If you try to view plane-polarised light through a second sheet of Polaroid which is placed 
so that its polarising direction is at right angles to the polarising direction of the first  
sheet, it will be found that no light is transmitted. In this arrangement, the Polaroids  
are said to be ‘crossed’. The second Polaroid sheet is acting as an analyser. If the two  
Polaroids have their polarising directions parallel, then plane-polarised light from the first 
Polaroid can pass through the second. These two situations are illustrated in Figure 7.20  
on the next page. Although the action of the Polaroid sheet is not that of a simple slit, 
the arrangement of the crossed Polaroids has the same effect as the crossed slits in the 
rope-and-slits experiment (Figure 7.17).

EXTENSION

The fact that light can be polarised was understood only in the early 1800s. This 
was a most important discovery. It showed that light is a transverse wave motion, 
and opened the way, 50 years later, to Maxwell’s theory of light as electromagnetic 
radiation. James Clerk Maxwell described light in terms of oscillating electric and 
magnetic fields, at right angles to each other and at right angles to the direction 
of travel of the wave energy (see Figure 7.15). When we talk about the direction of 
polarisation of a light wave, we refer to the direction of the electric field component 
of the electromagnetic wave.

When unpolarised light arrives at a Polaroid sheet, the component of the electric 
field of the incident light which is parallel to the molecules is strongly absorbed, 
whereas light with its electric field perpendicular to the molecules is transmitted 
through the sheet.
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unpolarised
light

a) polariser analyser

plane polarised
light

no light passes
through the analyser

the molecular chains
in this analyser are at
right angles to those
in the polariser

unpolarised
light

b) polariser analyser

plane polarised
light

polarised light
passes through
the analyserthe molecular chains

in this analyser are
parallel to the chains
in the polariser

▲	 Figure 7.20	Polariser	and	analyser	in	a)	crossed	and	b)	parallel	situations

Malus’s	law
When two Polaroid sheets are crossed, none of the polarised light transmitted through 
the first sheet can be transmitted through the second Polaroid sheet. However, if the 
two Polaroid sheets are arranged so that the polarising direction of the second sheet is 
at an angle of less than 90° to the polarising direction of the first sheet, some light can 
be transmitted. The brightness or intensity of light emerging from the second sheet 
depends on the angle between the polarising directions of the two sheets.

Consider the maximum light intensity transmitted through the polariser to have 
amplitude A0 and intensity I0. The plane of polarisation of the light from the polariser is 
at an angle θ to the polarising direction of the analyser. See Figure 7.21.

unpolarised
light

polariser
analyser

plane
polarised
light

allowed direction
of vibration of the
light

allowed direction
of vibration of the
light

plane polarised
light with reduced
intensity

II0 qq

▲	 Figure 7.21	Action	of	an	analyser

The analyser polarises the light in a direction parallel to its polarising direction – the 
plane of polarisation is rotated through an angle θ. The amplitude of the light emerging is 
A0 cos θ. Since intensity is proportional to the amplitude squared (I ∝ A2) the transmitted 
intensity I ∝ A0

2 cos2 θ.
and therefore,

I = I0 cos2 θ

This is known as Malus’s law.
Hence, when θ = 0, the maximum intensity I0 is transmitted, and when θ = 90°, no light 
is transmitted.
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11 The analyser shown in Figure 7.20b is adjusted to give maximum intensity of 
transmitted light.

 Describe the intensity transmitted by the analyser as it is slowly rotated through 
360°. Draw a graph to show how the intensity varies with the angle of rotation of the 
analyser.

12 The polariser and analyser have their planes of polarisation parallel (as shown in 
Figure 7.20b).

 Calculate the angle the analyser must be turned through to reduce the transmitted 
light intensity by a quarter.

Questions

SUMMARY

» A progressive wave travels outwards from the 
source, carrying energy but without transferring 
matter.

» In a transverse wave, the oscillations of the 
particles are at right angles to the direction in 
which the wave carries energy.

» In a longitudinal wave, the oscillations of the 
particles are in the same direction as the direction 
in which the wave carries energy.

» Transverse and longitudinal waves can be 
represented by a graph of displacement against 
distance along the wave at a particular moment 
in time, or as a graph of displacement against 
time to show how the displacement changes at a 
particular position.

» The relative positions of two points on the same 
wave, or of two waves of the same frequency can 
be stated as a phase difference in degrees.

» An oscilloscope can display sound waves as a 
voltage–time graph from which the frequency and 
amplitude of the wave can be determined.

» Properties of wave motion (reflection, refraction, 
diffraction and interference) can be observed for 
water waves in a ripple tank.

» The intensity of a wave is the power per unit area. 
Intensity is proportional to the square of the 
amplitude.

» The speed v, frequency f and wavelength λ of a 
wave are related by v = f λ.

» When a source of sound waves moves relative 
to a stationary observer there is a change in the 
observed frequency compared with the frequency 
emitted by the source. This is the Doppler effect.

» The observed frequency f0 is related to the source 
frequency f and the speed of the source, v, by  
f0 = fsv/(v ± vs).

» All electromagnetic waves have the same speed in 
free space c = 3.00  ×  108 m s−1.

» All electromagnetic waves are transverse waves.
» The wavelengths of electromagnetic waves in free 

space visible to the human eye are in the range 
400 nm to 700 nm.

» In a plane-polarised wave, the vibrations of the 
wave are in one direction only, which is at right-
angles to the direction of travel of the wave.

» Transverse waves can be polarised; longitudinal 
waves cannot.

» Plane-polarised light can be produced from 
unpolarised light by using a polariser, such as a 
sheet of Polaroid.

» Rotating an analysing Polaroid in a beam of 
plane-polarised light prevents transmission of the 
polarised light when the polarising directions of 
polariser and analyser are at right angles.

» Malus’s law (I = I0 cos2 θ ) is used to calculate the 
intensity of plane-polarised electromagnetic 
waves after transmission through a polarising 
filter or series of filters.

WORKED EXAMPLE 7F

The polariser in Figure 7.19 is slowly rotated through 360°. Describe the intensity of 
the transmitted plane polarised light as the polariser is rotated.

Answer
The intensity does not vary. (The incident light is unpolarised and, therefore, the 
vibrations take place in many different directions. On average there are the same 
number of vibrations in each direction.)
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END OF TOPIC QUESTIONS

1 Fig. 7.22 represents the displacement against distance for a transverse wave. 
Which point, A, B, C or D vibrates out of phase with point O by 180°?

 

0

O D

B

A C

di
sp

la
ce

m
en

t

distance

▲ Figure 7.22

2 Fig. 7.23 represents the screen of a cathode-ray oscilloscope (c.r.o.). The c.r.o. 
shows the waveform of a sound wave.

 The time-base setting is 0.40 ms cm−1. What is the frequency of the sound wave?
 A 0.63 Hz   B 1.3 Hz   C 630 Hz   D 1300 Hz

 1.0cm

1.0cm

▲ Figure 7.23

3 A monochromatic source of electromagnetic waves is viewed through two pieces 
of polarising filter whose preferred direction of vibration are parallel to each other.

 What angle should one sheet of polarising filter be turned to reduce the amplitude 
of the observed wave to half its original value?

 A 30°   B 45°   C 60°   D 90°
4 A certain sound wave in air has a speed 340 m s−1 and wavelength 1.7 m. For this 

wave, calculate:
a the frequency,
b the period.

5 The speed of electromagnetic waves in vacuum (or air) is 3.00  ×  108 m s−1.
a The visible spectrum extends from a wavelength of 400 nm (blue light) to 

700 nm (red light).
 Calculate the range of frequencies of visible light.
b A typical frequency for v.h.f. television transmission is 250 MHz. Calculate the 

corresponding wavelength.
6 Two waves travel with the same speed and have the same amplitude, but the 

first has twice the wavelength of the second. Calculate the ratio of the intensities 
transmitted by the waves.

End of topic questions
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7 A student stands at a distance of 5.0 m from a point source of sound, which is 

radiating uniformly in all directions. The intensity of the sound wave at her ear is 
6.3  ×  10−6 W m−2.
a The receiving area of the student’s ear canal is 1.5 cm2. Calculate how much 

energy passes into her ear in 1 minute.
b The student moves to a point 1.8 m from the source. Calculate the new intensity 

of the sound.
8 Assume that waves spread out uniformly in all directions from the epicentre of  

an earthquake. The intensity of a particular earthquake wave is measured as  
5.0  ×  106 W m−2 at a distance of 40 km from the epicentre. What is the intensity at  
a distance of only 2 km from the epicentre?

9 A student is studying a water wave in which all the wavefronts are parallel to one 
another. The variation with time t of the displacement x of a particular particle 
in the wave is shown in Fig. 7.24. The distance d of the oscillating particles from 
the source of the waves is measured. At a particular time, the variation of the 
displacement x with this distance d is shown in Fig. 7.25.

–3

–1

–2

+1

0

+3

x 
 /m

m

+2

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
t /s

▲ Figure 7.24

–3

x 
/m

m

–1

–2

+1

0

+3

+2

1 2 3 4 5 6 7
d/cm

▲ Figure 7.25

a Define, for a wave, what is meant by:
i displacement, [1]
ii wavelength. [1]

b Use Figs. 7.24 and 7.25 to determine, for the water wave:
i the period T of vibration, [1]
ii the wavelength λ, [1]
iii the speed v. [2]

c i Use Figs. 7.24 and 7.25 to state and explain whether the wave is losing 
power as it moves away from the source. [2]

ii Determine the ratio 
intensity of wave at source

intensity of wave 6.0 cm from source  [3]

Cambridge International AS and A Level Physics (9702) Paper 22 Q5 Oct/Nov 2010
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7
10 a State one property of electromagnetic waves that is not common to other 

transverse waves. [1]
b The seven regions of the electromagnetic spectrum are represented by blocks 

labelled A to G in Fig. 7.26. A typical wavelength for the visible region D is 500 nm.
visible region

wavelength decreasing

A B C D E GF

▲  Figure 7.26

i Name the principle radiations and give a typical wavelength for each  
of the regions B, E and F. [3]

ii Calculate the frequency corresponding to a wavelength of 500 nm. [2]

Cambridge International AS and A Level Physics (9702) Paper 23 Q5 Oct/Nov 2012

11 a A loudspeaker oscillates with frequency f to produce sound waves of 
wavelength λ. The loudspeaker makes N oscillations in time t.
i State expressions, in terms of some or all of the symbols f, λ and N, for:

1 the distance moved by a wavefront in time t,
2 time t. [2]

ii Use your answers in i to deduce the equation relating the speed v of the 
sound wave to f and λ. [1]

b The waveform of a sound wave is displayed on the screen of a cathode-ray 
oscilloscope (c.r.o.), as shown in Fig. 7.27.

1.0cm

1.0cm

▲  Figure 7.27

 The time-base setting is 0.20 ms cm−1.
 Determine the frequency of the sound wave. [2]
c Two sources S1 and S2 of sound waves are positioned as shown in Fig. 7.28.
 The sources emit coherent sound waves of wavelength 0.85 m. A sound 

detector is moved parallel to the line S1S2 from a point X to a point Y. 
Alternate positions of maximum loudness L and minimum loudness Q are 
detected, as illustrated in Fig. 7.28.

 Distance S1X is equal to distance S2X. Distance S2Y is 7.40 m.
i Explain what is meant by coherent waves. [1]
ii State the phase difference between the two waves arriving at the  

position of minimum loudness Q that is closest to point X. [1]
iii Determine the distance S1Y. [2]

Cambridge International AS and A Level Physics (9702) Paper 21 Q5 May/June 2019

7.40m

Y

X

L
Q

L

Q
L

S2

S1

▲  Figure 7.28 (not to scale)

End of topic questions
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12 The variation with time t of the displacement y of a wave X, as it passes a point P, is 

shown in Fig. 7.29.
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–2.0
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–1.0

4.0

3.0

t /m s

y
/c
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wave X

1.01.0 2.02.0 3.03.0 5.05.04.04.0

▲  Figure 7.29

 The intensity of wave X is I.
a Use Fig. 7.29 to determine the frequency of wave X. [2]
b A second wave Z with the same frequency as wave X also passes point P.  

Wave Z has intensity 2I. The phase difference between the two waves is 90°. 
  On a copy of Fig. 7.29, sketch the variation with time t of the displacement y of 

wave Z. Show your working. [3]

Cambridge International AS and A Level Physics (9702) Paper 21 Q5a and b May/June 2016

13 a Explain what is meant by the following quantities for a wave on the surface of 
water:
i displacement and amplitude, [2]
ii frequency and time period. [2]

b Fig. 7.30 represents waves on the surface of water in a ripple tank at one 
particular instant of time.

12 mm

25 cm

water

direction of travel of waves

15 mm

ripple tank

vibrator

side view

▲  Figure 7.30

 A vibrator moves the surface of the water to produce the waves of frequency f. 
The speed of the waves is 7.5 cm s−1. Where the waves travel on the water surface, 
the maximum depth of the water is 15 mm and the minimum depth is 12 mm.
i Calculate, for the waves:

1 the amplitude, [1]
2 the wavelength. [2]

ii Calculate the time period of the oscillations of the vibrator. [2]
c State and explain whether the waves on the surface of the water shown in  

Fig. 7.30 are:
i progressive or stationary, [1]
ii transverse or longitudinal. [1]

Cambridge International AS and A Level Physics (9702) Paper 21 Q5 May/June 2014
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7
14	 A	microphone	detects	a	musical	note	of	frequency	f.	The	microphone	is	connected	

to	a	cathode-ray	oscilloscope	(c.r.o.).	The	signal	from	the	microphone	is	observed	
on	the	c.r.o.	as	illustrated	in	Fig.	7.31.

1 cm

1 cm

▲  Figure 7.31

	 The	time-base	setting	of	the	c.r.o.	is	0.50	ms	cm−1.	The	Y-plate	setting	is	2.5	mV	cm−1.
a	 Use	Fig.	7.31	to	determine:

i	 the	amplitude	of	the	signal,	 [2]
ii	 the	frequency	f,	 [3]
iii	 the	actual	uncertainty	in	f caused	by	reading	the	scale	on	the	c.r.o.	 [2]

b	 State	f with	its	actual	uncertainty.	 [1]

Cambridge International AS and A Level Physics (9702) Paper 23 Q2 Oct/Nov 2014

15 a i	 Explain	what	is	meant	by	a	progressive transverse wave.	 [2]
ii	 Define	frequency.	 [1]

b	 The	variation	with	distance	x of	displacement	y for	a	transverse	wave	is	shown	
in	Fig.	7.32.

y 
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m
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▲  Figure 7.32
	 On	Fig.	7.32	five	points	are	labelled.	Use	Fig.	7.32	to	state	any	two	points	having	

a	phase	difference	of:
i	 zero,	 [1]
ii	 270°.	 [1]

c	 The	frequency	of	the	wave	in	b	is	15	Hz.	Calculate	the	speed	of	the	wave	in	b.	 [3]
d	 Two	waves	of	the	same	frequency	have	amplitudes	1.4	cm	and	2.1	cm.

	 Calculate	the	ratio	
intensity	of	wave	of	amplitude	1.4	cm
intensity	of	wave	of	amplitude	2.1	cm 	 [2]

Cambridge International AS and A Level Physics (9702) Paper 23 Q7 Oct/Nov 2014

End of topic questions
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16 A source of light of one frequency is viewed through two sheets of Polaroid.  

The preferred directions of vibration of the light for the two sheets of Polaroid are 
parallel. The intensity of the observed light after passing through the two sheets of 
Polaroid is I.
a One sheet of Polaroid is rotated until the amplitude of the vibration of the 

observed light is reduced to a third of its original value. Calculate the angle 
rotated by the sheet of Polaroid.

b State the effect of this rotation on the intensity of the light transmitted.
c Calculate the angle of rotation of one sheet to reduce the intensity of the 

transmitted light to one third of its original value.

17 Light reflected from the surface of smooth water may be described as a polarised 
transverse wave.
a By reference to the direction of propagation of energy, explain what is  

meant by:
i a transverse wave, [1]
ii polarisation. [1]

Cambridge International AS and A Level Physics (9702) Paper 02 Q5 part a May/June 2007
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8.1 Superposition and interference of waves
Any moment now the unsuspecting fisherman in Figure 8.1 is going to experience 
the effects of interference. The amplitude of oscillation of his boat will be significantly 
affected by the two approaching waves and their interaction when they reach his position.

	 8	 Superposition

Learning outcomes
By the end of this topic, you will be able to:

8.1 Stationary waves
1 explain and use the principle of superposition
2  show an understanding of experiments 

that demonstrate stationary waves using 
microwaves, stretched strings and air 
columns

3  explain the formation of a stationary wave 
using a graphical method and identify nodes 
and antinodes

4  understand how wavelength may be 
determined from the positions of nodes and 
antinodes of a stationary wave

8.2 Diffraction
1 explain the meaning of the term diffraction
2  show an understanding of experiments 

that demonstrate diffraction including the 

qualitative effect of the gap width relative 
to the wavelength of the wave, for example, 
diffraction of water waves in a ripple tank

8.3 Interference
1  understand the terms interference and 

coherence
2  show an understanding of experiments that 

demonstrate two-source interference using 
water waves, sound, light and microwaves

3  understand the conditions required if two-
source interference fringes are to be observed

4  recall and use k = ax/D for double-slit 
interference using light

8.4 The diffraction grating
1 recall and use d sin θ = nk
2  describe the use of a diffraction grating to 

determine the wavelength of light

Starting points
★ Basic properties of waves such as reflection and refraction.
★ Knowledge of the terms used to describe waves.
★ Graphical representation of waves.

▲ Figure 8.1

AS LEVEL
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If two or more waves overlap, the waves are said to interfere. The resultant at any 
point is the sum of the individual displacements of each of the waves. Remember that 
displacement is a vector quantity. This may lead to a resultant wave of either a larger or a 
smaller amplitude than either of the two component waves.

Interference is where two or more waves meet or overlap to form a resultant 
wave. The resultant displacement at any point is the sum of displacements of the 
individual waves.

▲ Figure 8.2 The 
interference pattern 
obtained using two point 
sources to produce 
circular water waves in 
a ripple tank

Interference effects can be observed with all types of waves, for example, surface water 
waves, sound and electromagnetic waves.

Interference can be demonstrated in a ripple tank (see Figure 7.6 in Topic 7) by using two 
point sources. Figure 8.2 shows the effect produced, and Figure 8.3 shows how it arises.

lines of maximum displacementcrest + crest
trough + trough

crest + trough

point sources

crest

trough

▲ Figure 8.3 Two-source interference of circular waves

Constructive and destructive interference
The overlapping of two waves of the same frequency may produce an interference 
pattern.

Figure 8.4 shows two waves of the same frequency arriving at a point in phase.  
The waves interfere constructively. The frequency of the resultant is the same as that of 
the incoming waves. A resultant wave will be produced which has crests much higher 
than either of the two individual waves, and troughs which are much deeper. In this 
case the incoming waves have equal amplitude A, so the resultant wave produced by 
constructive interference has an amplitude of 2A.

A

2A

A

+ =

▲ Figure 8.4 Constructive interference

In the case shown in Figure 8.5, the incoming waves arrive with a phase difference of 
π radians or 180º (in antiphase). The peaks of one wave arrive at the same time as the 
troughs from the other and they will interfere destructively. Where the incoming waves 
have equal amplitude, as in Figure 8.5, the resultant wave has zero amplitude.
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A

A

+

▲ Figure 8.5 Destructive interference

This situation is an example of the principle of superposition of waves. The principle 
describes how waves, which meet at the same point in space, interact.

The principle of superposition states that, when two or more waves meet at 
a point, the resultant displacement at that point is equal to the sum of the 
displacements of the individual waves at that point.

Because displacement is a vector, we must remember to add the individual displacements 
taking account of their directions. The principle applies to all types of wave.

If we consider the effect of superposition at a number of points in space, we can build 
up a pattern showing some areas where there is constructive interference, and hence a 
large wave disturbance, and other areas where the interference is destructive, and there 
is little or no wave disturbance.

Figure 8.6 illustrates the interference of waves from two point sources A and B.  
The point C is equidistant from A and B: a wave travelling to C from A moves through 
the same distance as a wave travelling to C from B (their path difference is zero). If the 
waves started in phase at A and B, they will arrive in phase at C (phase difference is 
zero). They combine constructively, producing a maximum disturbance at C.

path difference = λ
constructive interference
will occur here

D –

C –

E –

path difference = 0
constructive interference
will occur here

path difference = λ /2
destructive interference
will occur here

A

B

 
▲ Figure 8.6 Producing an interference pattern

At other places, such as D, the waves will have travelled different distances from the 
two sources. There is a path difference between the waves arriving at D. If this path 
difference is a whole number of wavelengths (1λ, 2λ, 3λ, etc.) the waves arrive in phase 
and interfere constructively, producing maximum disturbance again. The equivalent 
phase differences between the waves are 2π radians, 4π radians, 6π radians, etc. or 360°, 
720°, 1080°, etc. However, at places such as E, the path difference is an odd number 
of half-wavelengths (λ/2, 3λ/2, 5λ/2, etc.). The waves arrive at E in antiphase, and 
interference is destructive, producing a minimum resultant disturbance. The equivalent 
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phase differences between the waves are π radians, 3π radians , 5π radians etc. or 180°, 
540°, 900°, etc. The maxima and minima disturbances are called fringes. The collection 
of fringes produced by the superposition of overlapping waves is called an interference 
pattern. One is shown in Figure 8.2 for water waves.

Producing an interference pattern with sound waves
Figure 8.7 shows an experimental arrangement to demonstrate interference with sound 
waves from two loudspeakers connected to the same signal generator, so that each speaker 
produces a note of the same frequency. The demonstration is best carried out in the open 
air (on playing-fields, for example) to avoid reflections from walls, but it should be a 
windless day. Moving about in the space in front of the speakers, you pass through places 
where the waves interfere constructively and you can hear a loud sound. In places where 
the waves interfere destructively, the note is much quieter than elsewhere in the pattern.

The positions of maximum and minimum sound can also be detected using a 
microphone and CRO similar to the arrangement shown in Figure 7.11 in Topic 7.

signal
generator

speaker

speaker

~1–2 m
apart

interference
pattern

▲ Figure 8.7 Demonstration of interference with sound waves

Producing an interference pattern with light waves
If you try to set up a demonstration with two separate light sources, such as car 
headlights, you will find that it is not possible to produce an observable interference 
pattern (Figure 8.8). A similar demonstration works with sound waves from two 
loudspeakers, each connected to separate signal generators. What has gone wrong?

no observable
interference
pattern is
produced here
where the light
waves from the
headlights
overlap

car
headlights

▲ Figure 8.8 Failure of an interference demonstration with light
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To produce an observable interference pattern, the two wave sources must have the 
same single frequency, not a mixture of frequencies as is the case for light from car 
headlights. They must also have a constant phase difference. In the sound experiment, 
the waves from the two loudspeakers have the same frequency and a constant phase 
difference because the loudspeakers are connected to the same oscillator and amplifier. 
The waves emitted from the speakers are in phase when the experiment begins and they 
stay in phase for the whole experiment.

Two waves from coherent sources are illustrated in Figure 8.9.

two coherent
wave sources

▲ Figure 8.9 Coherent waves

Light is emitted from sources as a series of pulses or packets of energy. These pulses last 
for a very short time, about a nanosecond (10–9 s). Between each pulse there is an abrupt 
change in the phase of the waves. Waves from two separate sources may be in phase at 
one instant, but out of phase in the next nanosecond. The human eye cannot cope with 
such rapid changes, so the pattern is not observable. Separate light sources, even of the 
same frequency, produce incoherent waves (Figure 8.10).

abrupt change
in phase

abrupt change
in phase

abrupt change
in phase

abrupt change
in phase

▲ Figure 8.10 Incoherent light waves

To obtain observable interference patterns, it is not essential for the amplitudes of the 
waves from the two sources to be the same. However, if the amplitudes are not equal, a 
completely dark fringe will never be obtained, and the contrast of the pattern is reduced.

Wave sources which maintain a constant phase difference are described as 
coherent sources.

Two or more waves are coherent if they have a constant phase difference.
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Young’s double-slit experiment
In 1801 Thomas Young (1773–1829) demonstrated how light waves could produce an 
interference pattern. The experimental arrangement is shown in Figure 8.11 (not to scale).

monochromatic
light source

 e.g. laser

diffracted light
from slit A

single
slit

double
slit

screen position

diffracted light
from slit B interference

pattern

A

B

D

a

x

▲ Figure 8.11 Young’s double-slit experiment

A monochromatic light source (a source of one colour, and hence one wavelength λ) is 
placed behind a single slit to create a small, well-defined source of light. Light from this 
source is diffracted at the slit (diffraction of waves at a gap is described in more detail 
in Topic 8.3), producing two light sources at the double slit A and B. Because these two 
light sources originate from the same primary source, they are coherent and create a 
sustained and observable interference pattern, as seen in the photograph of the dark 
and bright interference fringes in Figure 8.12. Bright fringes are seen where constructive 
interference occurs – that is, where the path difference between the two diffracted 
waves from the sources A and B is nλ, where n is a whole number. Dark fringes are seen 
where destructive interference occurs. The condition for a dark fringe is that the path 
difference should be n + 1

2
 λ.

The distance x on the screen between successive bright fringes (or between successive dark 
fringes) is called the fringe width or fringe separation. The fringe width is the same for bright 
and dark fringes and is related to the wavelength λ of the light source by the equation

 λ = ax/D

where x is the fringe width, D is the distance from the double slit to the screen and a 
is the distance between the centres of the slits. Note that, because the wavelength of 
light is so small (of the order of 10–7 m), to produce observable fringes D needs to be 
large (about 1 to 2 m) and a as small as possible (about 0.5 to 1 mm). (This is another 
reason why you could never see an interference pattern from two sources such as car 
headlamps.) See Worked Example 8A overleaf.

▲ Figure 8.12 Fringe 
pattern in Young’s 
experiment
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Note that the fringe width (x) is proportional to D (a and λ constant), proportional to λ 
(D and a constant) and inversely proportional to a (λ and D constant).

Although Young’s original double-slit experiment was carried out with light, the 
conditions for constructive and destructive interference apply for any two-source 
situation. The same formula applies for all types of wave, including sound waves, surface 
water waves and microwaves, provided that the fringes are detected at a distance of 
many wavelengths from the two sources.

Double-slit interference with microwaves
Figure 8.13 shows an experimental arrangement to demonstrate interference with 
microwaves. The microwaves of a single frequency are emitted from a microwave source 
and detected with a microwave probe after passing through two slits. Metal plates are 
used to produce the double slit arrangement. Microwaves with a wavelength of a few 
centimetres are generally used. The microwaves are diffracted (see Topic 8.3) at each slit 
and then the waves from each slit overlap to produce an interference pattern.

to CRO

probe

microwave
source

metal
plates

▲ Figure 8.13 Demonstration of interference with microwaves

The probe detects places of constructive interference (maxima) and destructive 
interference (minima) and these are shown as a trace on the CRO. If the probe is moved 
parallel to the metal plates the fringe width can be measured and the wavelength of the 
microwaves determined.

The conditions for interference fringes to be observed
The interference pattern (system of maxima and minima fringes) is detected when 
the sources are coherent. The sources are coherent if they have a constant phase 
difference. This implies they must have the same frequency and wavelength.  
The contrast between the fringes is improved if the amplitudes are the same or similar. 
If the waves are transverse they must be unpolarised or polarised in the same plane 
(see Topic 7.4).

Table 8.1 shows typical dimensions for two-source interference with different types of 
waves.

type of wave λ/cm D/cm a/cm x/cm

water ripples 1  20 4 5

sound 60 100 150 40

light 5 × 10–5 200 0.05 0.2

microwaves 3  50 5 30

▲ Table 8.1 Typical dimensions for two-source interference of waves
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▲ Figure 8.14 Cello being 
bowed

1 Calculate the wavelength of light which produces fringes of width 0.50 mm on a 
screen 60 cm from two slits 0.75 mm apart.

2 Radar waves of wavelength 50 mm are emitted from two aerials and create a fringe 
pattern 1.0 km from the aerials. Calculate the distance between the aerials if the 
fringe spacing is 80 cm.

White light fringes
If the two slits in Young’s experiment are illuminated with white light, each of the 
different wavelengths making up the white light produces their own fringe pattern. 
These fringe patterns overlap. At the centre of the pattern, where the path difference 
for all waves is zero, there will be a white maximum with a black fringe on each side. 
Thereafter, the maxima and minima of the different colours overlap in such a way as to 
produce a pattern of white fringes with coloured edges. Blue appears on the edge nearest 
the central white fringe and red on the edge furthest from the central white fringe. Only 
a few will be visible; a short distance from the centre so many wavelengths overlap that 
they combine to produce what is effectively white light again.

8.2 Superposition and stationary waves
The notes we hear from a cello are created by the vibrations of its strings (Figure 8.14). 
The wave patterns on the vibrating strings are called stationary waves (or standing 
waves). The waves in the air which carry the sound to our ears transfer energy and are, 
therefore, progressive waves (see Topic 7.1).

Figure 8.15 shows a single transverse pulse travelling along a ‘slinky’ spring. The pulse 
is reflected when it reaches the fixed end. If a second pulse is sent along the slinky 
(Figure 8.16), the reflected pulse will pass through the outward-going pulse, creating a 
new pulse shape. Interference will take place between the outward and reflected pulses.

If the interval between outward pulses is reduced, a progressive wave is generated. 
When the wave reaches the fixed end, it is reflected. We now have two progressive 
waves of equal frequency and amplitude travelling in opposite directions on the same 
spring. The waves overlap and interfere, producing a wave pattern (Figure 8.17) in 
which the crests and troughs do not move. This pattern is called a stationary or standing 
wave because it does not move.

A stationary wave is the result of the overlapping and hence interference of two 
waves of equal frequency and amplitude, travelling along the same line with the 
same speed but in opposite directions.

Questions

WORKED EXAMPLE 8A

Calculate the observed fringe width for a Young’s double-slit experiment using light 
of wavelength 600 nm and slits 0.50 mm apart. The distance from the slits to the 
screen is 0.80 m.

Answer

Using x = λD/a,

x = 600 × 10–9 × 0.80/0.50 × 10 –3 = 9.6 × 10–4 m

= 0.96 mm
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end

outward
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▲	 Figure 8.15	Single	transverse	pulse	travelling	along	a	slinky

fixed
end

reflected
pulse

outward
pulse

▲	 Figure 8.16	Reflected	pulse	about	to	meet	an	outward-going	pulse

fixed
end

▲	 Figure 8.17	A	stationary	wave	is	created	when	two	waves	travelling	in	opposite		
directions	interfere.

Stationary	waves	on	strings
If a string is plucked and allowed to vibrate freely, there are certain frequencies at which 
it will vibrate. The amplitude of vibration at these frequencies is large. This is known as 
a resonance effect.

It is possible to investigate stationary waves in a more controlled manner using a length 
of string under tension and a vibrator driven by a signal generator. As the frequency of 
the vibrator is changed, different standing wave patterns are formed. Some of these are 
shown in Figure 8.18.

Figure 8.19 on the next page shows the simplest way in which a stretched string can 
vibrate. The wave pattern has a single loop. This is called the fundamental mode of 
vibration, also called the first harmonic. At the ends of the string there is no vibration. 
These points have zero amplitude and are called nodes. At the centre of the string, the 
amplitude is a maximum. A point of maximum amplitude is called an antinode.  
Nodes and antinodes do not move along the string.

▲	 Figure 8.18	First	four	
modes	of	vibration	of	a	
string
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antinode

L = l /2

▲ Figure 8.19 Fundamental mode of vibration of a stretched string

The wavelength λ of the standing wave in the fundamental mode is 2L. From the wave 
equation c = fλ, the frequency f1 of the note produced by the string vibrating in its 
fundamental mode is given by f1 = c/2L, where c is the speed of the progressive waves 
which have interfered to produce the stationary wave.

Figure 8.20 shows the next resonant frequency of the string. The stationary wave 
pattern has two loops. This frequency is sometimes called the first overtone, or 
the second harmonic (don’t be confused!). The wavelength is L. Applying the wave 
equation, the frequency f2 is found to be c/L.

N
A

N
A

N

L = l  

▲ Figure 8.20 Second mode of vibration of a stretched string

Figure 8.21 shows the next resonant frequency (the second overtone, or third 
harmonic). This is a pattern with three loops. The wavelength is 2L/3, and the 
frequency f3 is 3c/2L.

N N
A A A

N N

L = 3l /2

▲ Figure 8.21 Third mode of vibration of a stretched string
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» The amplitude of vibration varies with position along the string: it is zero at a 
node, and maximum at an antinode. In a progressive wave, all points have the 
same amplitude.

» The wavelength is twice the distance between adjacent nodes or antinodes.  
In a progressive wave it is the distance between adjacent points having the 
same phase (crest to adjacent crest or trough to adjacent trough).

» The nodes and antinodes do not move along the string, whereas in a 
progressive wave, the waveform (crests and troughs) moves with the velocity  
of the wave.

» There is no translational movement of energy but there is energy associated 
with the wave. In a progressive wave there is energy translation in the direction 
of movement of the waveform.

» Between adjacent nodes, all points of the stationary wave vibrate in phase.  
That is, all particles of the string are at their maximum displacement at the same 
instant. The particles between two adjacent nodes are π radians or 180° out of 
phase with the next two adjacent nodes. In a progressive wave, phase varies 
continuously along the wave. All neighbouring points along one wavelength 
are out of phase with each other, they reach their maximum displacement at 
different times.

» There are only certain frequencies of stationary waves possible on the string. 
The allowed frequencies depend on the length L of the string and c, the speed  
of the progressive waves that form the stationary wave.

EXTENSION

The general expression for the frequency fn of the nth mode (or the nth harmonic,  
or (n – 1)th overtone) is

fn = nc/2L   n = 1, 2, 3, …

The key features of a stationary wave pattern on a string, which distinguish it from a 
progressive wave, are as follows.

Explaining the formation of stationary waves
Let us explain the formation of a stationary wave using the principle of superposition. 
The set of graphs in Figure 8.22 overleaf represents displacement–distance graphs 
for two progressive waves of equal amplitude and frequency travelling in opposite 
directions, such as along a plucked string. The red-dashed line is for the wave travelling 
from left to right, and the blue-dashed line is for the wave going from right to left. This 
represents a string clamped at the right-hand end, producing a reflection (in blue) of the 
wave travelling from left to right (red). The effect of the clamp is to change the phase of 
the reflected wave by π radians (180º).
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t = T

t = 0

N A N N N NA A A A

t =    T3
4

t =    T1
2

t =    T1
4

▲ Figure 8.22 Formation of a stationary wave by superposition of two progressive waves 
travelling in opposite directions

The top graph shows the waves at an instant at which they are in phase. Superposition gives 
the purple curve, which has twice the amplitude of either of the progressive graphs. The 
second graph is the situation a quarter of a period (cycle) later, when the two progressive 
waves have each moved a quarter of a wavelength in opposite directions. This has brought 
them to a situation where the movement of one relative to the other is half a wavelength, 
so that the waves are exactly out of phase. The resultant, obtained by superposition, is zero 
everywhere. In the third graph, half a period from the start, the waves are again in phase, 
with maximum displacement for the resultant. The process continues through the fourth 
graph, showing the next out-of-phase situation, with zero displacement of the resultant 
everywhere. Finally, the fifth graph, one period on from the first, brings the waves into 
phase again.

We can see how there are some positions, the nodes N, where the displacement of the 
resultant is zero throughout the cycle. The displacement of the resultant at the antinodes 
A fluctuates from a maximum value when the two progressive waves are in phase to zero 
when they are out of phase. This explains the stationary waves shown in Figures 8.19, 
8.20 and 8.21.
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Stationary waves in air
Figure 8.23 shows an experiment to demonstrate the formation of stationary waves in 
air. A fine, dry powder (such as cork dust or lycopodium powder) is sprinkled evenly 
along the transparent tube. A loudspeaker powered by a signal generator is placed at the 
open end. The frequency of the sound from the loudspeaker is gradually increased.  
At certain frequencies, the powder forms itself into evenly spaced heaps along the tube. 
A stationary wave has been set up in the air, caused by the interference of the sound 
wave from the loudspeaker and the wave reflected from the closed end of the tube.  
At nodes (positions of zero amplitude) there is no disturbance, and the powder can settle 
into a heap. At antinodes the disturbance is at a maximum, and the powder is dispersed.

NA

speaker

heaps of powder

wires to
signal
generator

NA NA NA NA NA

▲ Figure 8.23 Demonstration of stationary waves in air

For stationary waves in a closed pipe, the air cannot move at the closed end, and so this 
must always be a node N. However, the open end is a position of maximum disturbance, 
and this is an antinode A. (In fact, the antinode is slightly outside the open end.  
The distance of the antinode from the end of the tube is called the end-correction.  
The value of the end-correction depends on the diameter of the tube.)

Figure 8.24 shows the simplest way in which the air in a pipe, closed at one end, can 
vibrate. Figure 8.24a illustrates the motion of some of the air particles in the tube. Their 
amplitude of vibration is zero at the closed end, and increases with distance up the tube 
to a maximum at the open end. This representation is tedious to draw, and Figure 8.24b 
is the conventional way of showing the amplitude of vibration: the amplitudes along the 
axis of the tube are plotted as a continuous curve. One danger of using diagrams like 
Figure 8.24b is that they give the impression that the sound wave is transverse rather 
than longitudinal. So be warned! The mode illustrated in Figure 8.24 is the fundamental 
mode (the first harmonic). The wavelength of this stationary wave (ignoring the end-
correction) is 4L, where L is the length of the pipe. Using the wave equation, the 
frequency f1 of the fundamental mode is given by f1 = c/4L, where c is the speed of the 
sound in air.

a) At this point the amplitude
of vibration of the air
molecules is a maximum.
This is an antinode.

At this point there is no
vibration of the air
molecules. This is a node. 

A

N

b)

L

▲ Figure 8.24 Fundamental mode of vibration of air in a closed pipe

Other modes of vibration are possible. Figures 8.25 and 8.26 (overleaf) show the 
second mode (the first overtone, or second harmonic) and the third mode (the second 
overtone, or third harmonic). The corresponding wavelengths are 4L/3 and 4L/5, and 
the frequencies are f2 = 3c/4L and f3 = 5c/4L.
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This is another example of resonance. The particular frequencies at which stationary 
waves are obtained in the pipe are also known as the resonant frequencies of the pipe. 
The particular frequencies of stationary waves possible in the pipe depend on the length 
L of the pipe and c, the speed of sound in air.

Measuring the wavelength of stationary waves

Stationary waves using microwaves
Stationary waves can be demonstrated using microwaves. A source of microwaves faces 
a metal reflecting plate, as shown in Figure 8.27. The microwaves from the source reflect 
off the metal reflector and overlap with the incoming waves from the source to produce 
stationary waves. A small probe detector is placed between source and reflector.  
The reflector is moved towards or away from the source until the signal picked up by 
the detector fluctuates regularly as it is moved slowly back and forth. The minima are 
nodes of the stationary wave pattern, and the maxima are antinodes. The distance 
moved by the detector between successive nodes or successive antinodes is half the 
wavelength of the microwaves.

microwave
source probe detector

metal reflector

to meter

▲ Figure 8.27 Using microwaves to demonstrate stationary waves

4
3λ

A

N

A

N

L
4

N

A

A

L

A

N

N

5λ

▲ Figure 8.25 Second mode 
of vibration of air in a 
closed pipe

▲ Figure 8.26 Third mode 
of vibration of air in a 
closed pipe

EXTENSION

The general expression for the frequency fn of the nth mode of vibration of the air in 
the closed tube (the nth harmonic, or the (n – 1)th overtone) is

fn = 
(2n – 1)c

4L
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Stationary waves using sound
The principle of resonance in a tube closed at one end can be used to measure the 
wavelength of sound in air and hence the speed of sound in air. A glass tube is placed in 
a cylinder of water. By raising the tube, the length of the column of air can be increased. 
A vibrating tuning fork of known frequency f is held above the open end of the glass 
tube, causing the air in it to vibrate and make a sound of the same frequency. A loud 
speaker connected to a signal generator can be used in place of the tuning fork to 
produce a known frequency of sound. The tube is gradually raised, increasing the length 
of the air column. At a certain position the note becomes much louder.

The air in the tube vibrates with a loud sound (resonance) when a stationary wave 
is produced in air in the tube. The lowest frequency that produces resonance occurs 
when the stationary wave is formed as shown on the left hand side of Figure 8.28. 
This is known as the first position of resonance, and occurs when a stationary wave 
corresponding to the fundamental mode is established inside the tube with one of its 
antinodes at the top of the tube. The length L1 of the air column is noted. The tube 
is raised further until the next position at which the sound is much louder is found. 
This position of second resonance corresponds to the second mode of vibration.  
The length L2 at this position is also noted. The two tube positions and the stationary 
waves corresponding to these positions are illustrated in Figure 8.28.

vibrating
tuning fork

first position
of resonance vibrating

air column

water

L2

L1

second
position of
resonance

▲ Figure 8.28 Wavelength of sound by the resonance tube method

At the first position of resonance, λ/4 = L1 + e, where e is the end-correction of the tube (to 
allow for the fact that the antinode is slightly above the open end of the tube). At the second 
position of resonance, 3λ/4 = L2 + e. By subtracting these equations, we can eliminate e

λ/2 = L2 – L1

from which the wavelength of sound can be found. Note that the distance between the 
two successive antinodes is λ/2.

From the wave equation, the speed of sound c is given by c = fλ. Thus

c = 2f(L2 – L1)

Figure 8.29 (overleaf) illustrates a method of measuring the wavelength and speed of 
sound using stationary waves in free air, rather than in the tube shown in Figure 8.28. 
The signal generator and loudspeaker produce a note of known frequency f.
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The reflector is moved slowly back and forth until the trace on the oscilloscope has a 
minimum amplitude. When this happens, a stationary wave has been set up with one of its 
nodes in the same position as the microphone. The microphone is now moved along the line 
between the loudspeaker and the reflector. The amplitude of the trace on the oscilloscope 
will increase to a maximum, and then decrease to a minimum. The microphone has been 
moved from one node, through an antinode, to the next node. The distance d between these 
positions is measured. We know that the distance between nodes is λ/2, so the wavelength 
can be easily found. The speed of sound can then be calculated using c = fλ, giving c = 2fd.

WORKED EXAMPLE 8B

1 A string 75 cm long is fixed at one end. The other end is moved up and down 
with a frequency of 15 Hz. This frequency gives a stationary wave pattern with 
three complete loops on the string. Calculate the speed of the progressive waves 
which have interfered to produce the stationary wave.

2 Find the fundamental frequency and next two possible resonant frequencies for 
an organ pipe which is 0.17 m long and closed at one end. The speed of sound in 
air is 340 m s–1.

Answers
1 The three-loop pattern corresponds to the situation where the length L of the string is 

3λ/2 (see Figure 8.21). The wavelength λ is thus 2 × 0.75/3 = 0.50 m. The frequency 
of the wave is 15 Hz, so by the wave equation c = fλ = 15 × 0.50 = 7.5 m s–1.

2 The frequencies of the fundamental and next two possible resonant frequencies of a 
tube of length L, closed at one end, are c/4L, 3c/4L and 5c/4L (see Figures 8.24–8.26). 
The frequencies are thus 340/4 × 0.17 = 500 Hz, 3 × 340/4 × 0.17 = 1500 Hz and  
5 × 340/4 × 0.17 = 2500 Hz.

3 A violin string vibrates with the lowest possible (fundamental) frequency of 440 Hz. 
What are the frequencies of the next two possible resonant frequencies?

4 The speed of waves on a certain stretched string is 48 m s–1. When the string is 
vibrated at frequency of 64 Hz, stationary waves are set up. Find the separation of 
successive nodes in the stationary wave pattern.

5 You can produce a musical note from an empty lemonade bottle by blowing across 
the top. This is an example of resonance. What fundamental frequency of vibration 
would you expect for a bottle 25 cm deep? The speed of sound in air is 340 m s–1.

6 A certain organ pipe, closed at one end, can produce loud sounds only at the 
following consecutive frequencies: 640 Hz, 896 Hz and 1152 Hz. Deduce its 
fundamental frequency.

Questions

microphone

reflector

oscilloscope

loudspeaker

signal generator

▲ Figure 8.29 Wavelength and speed of sound using stationary waves in free air
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8.3 Diffraction and the diffraction grating
When waves pass through a narrow gap, they spread out. This spreading out is called 
diffraction. The extent of diffraction depends on the width of the gap compared 
with the wavelength. It is most noticeable if the width of the gap is approximately equal 
to the wavelength. Diffraction can be demonstrated in a ripple tank (see Topic 7) by 
using the apparatus shown in Figures 7.6 and 7.7.

Diffraction is illustrated in Figure 8.30. Note that diffraction may also occur at an edge.

a) b)

▲ Figure 8.30 Ripple tank pattern showing diffraction at a) a wide gap, b) a narrow gap

Diffraction is defined as the spreading of a wave into regions where it would not  
be seen if it moved only in straight lines after passing through a narrow slit or past 
an edge.

Although we often hear the statement ‘light travels in straight lines’, there are 
occasions when this appears not to be the case. Newton tried to explain the fact that 
when light travels through an aperture (gap), or passes the edge of an obstacle, it 
deviates from the straight-on direction and appears to spread out. We have seen from 
the ripple tank demonstration (Figure 8.30) that water waves spread out when they 
pass through an aperture. This shows that water waves can be diffracted. The fact 
that light undergoes diffraction is powerful evidence that light has wave properties. 
Newton’s attempt to explain diffraction was not, in fact, based on a wave theory of 
light. The Dutch scientist Christian Huygens, a contemporary of Newton, favoured the 
wave theory, and used it to account for reflection, refraction and diffraction. (It was 
not until 1815 that the French scientist Augustin Fresnel developed the wave theory of 
light to explain diffraction in detail.)

The experiment illustrated in Figure 8.30 shows that the degree to which waves are 
diffracted depends upon the size of the obstacle or aperture and the wavelength of the 
wave. The greatest effects occur when the wavelength is about the same size as the 
aperture. The wavelength of light is very small (green light has wavelength 5 × 10–7 m), 
and, therefore, diffraction effects can be difficult to detect.

Huygens’ explanation of diffraction
If we let a single drop of water fall into a ripple tank, it will create a circular wavefront 
which will spread outwards from the disturbance (Figure 7.8). Huygens put forward a 
wave theory of light which was based on the way in which circular wavefronts advance. 
He suggested that, at any instant, all points on a wavefront could be regarded as 
secondary disturbances, giving rise to their own outward-spreading circular wavelets. 
The envelope, or tangent curve, of the wavefronts produced by the secondary sources 
gives the new position of the original wavefront. This construction is illustrated in 
Figure 8.31 (overleaf) for a circular wavefront.
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▲ Figure 8.31 Huygens’ construction for a circular wavefront

Now think about a plane (straight) wavefront. If the wavefront is restricted in any way, 
for example, by passing through an aperture in the form of a slit, some of the wavelets 
making up the wavefront are removed, causing the edges of the wavefront to be curved. 
If the wavelength is small compared with the size of the aperture, the wavefronts which 
pass through the aperture show curvature only at their ends, and the diffraction effect 
is relatively small. If the aperture is comparable with the wavelength, the diffracted 
wavefronts become circular, centred on the slit. Note that there is no change of 
wavelength with diffraction. This effect is illustrated in Figure 8.30.

Figure 8.32 shows the diffraction pattern created by a single slit illuminated by 
monochromatic light. The central region of the pattern is a broad, bright area with 
narrow, dark fringes on either side. Beyond these is a further succession of bright and 
dark areas. The bright areas become less and less intense as we move away from the 
centre.

This single-slit diffraction pattern has many features that we associate with an 
interference pattern. But how can a single slit produce an interference-type pattern?  
The explanation that follows is based on Huygens’ wavelet idea.

Figure 8.33 shows plane wavefronts arriving at a single slit of width a. Each point on 
the wavefront passing through the slit can be considered to be a source of secondary 
wavelets.

One such source is at A, at the top edge of the slit, and a second is at B, at the centre of the 
slit, a distance a/2 along the wavefront from A. These two sources behave like the sources in 
a two-source interference experiment. The wavelets spreading out from these points overlap 
and create an interference pattern. In the straight-on direction, there is no path difference 
between the waves from A and B. Constructive interference occurs in this direction, giving 
a bright fringe in the centre of the pattern. To either side of the central fringe there are 
directions where the path difference between the waves from A and B is an odd number 
of half-wavelengths. This is the condition for destructive interference, resulting in dark 
fringes. The condition for constructive interference is that the path difference should be a 
whole number of wavelengths. Thus, the dark fringes alternate with bright fringes.

This argument can be applied to the whole of the slit. Every wavelet spreading out from 
a point in the top half of the slit can be paired with one coming from a point a/2 below 
it in the lower half of the slit. When wavelets from points right across the aperture are 
added up, we find that there are certain directions in which constructive interference 

▲ Figure 8.32 Diffraction 
of light at a single slit

qaB

path difference
between these
two waves = 

q

A  sinqa
2

▲ Figure 8.33 Light 
leaving a single slit
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occurs, and other directions in which the interference is destructive. Figure 8.34 is a 
graph of the intensity of the diffraction pattern as a function of the angle θ at which the 
light is viewed. It shows that most of the intensity is in the central area, and that this is 
flanked by dark and bright fringes.

WORKED EXAMPLE 8C (EXTENSION)

Calculate the angle between the centre of the diffraction pattern and the first 
minimum when light of wavelength 600 nm passes through a slit 0.10 mm wide.

Answer
Using a sin θ = nλ, we have sin θ = nλ/a. Substituting, sin θ = 1 × 6.0 × 10–7/1.0 × 10–4 
(Don’t forget to convert the nm and mm to m.)  = 0.0060, and θ = 0.34°

Using the sin θ = θ approximation, we would have obtained

θ = nλ/a = 1 × 6.0 × 10–7/1.0 × 10–4 = 0.0060 rad (which is equal to 0.34°).

intensity

0 q

EXTENSION

We can use Figure 8.33 to derive an expression for the angle at which the first dark 
fringe is obtained. Remember that the condition for destructive interference is that the 
path difference between the two rays should be half a wavelength. The path difference 
between the two rays shown in Figure 8.33 is 1

2
a sin θ. If this is to be λ/2, we have

sin θ = λ/a

This is the condition to observe the first dark fringe at angle θ. More generally,

sin θ = nλ/a

where n is a whole number called the order of the dark fringe being considered, 
counting outwards from the centre.

Although we have been concentrating on a diffraction pattern obtained with light, the 
derivation above applies to any type of wave passing through a rectangular aperture.

The wavelength of light is generally small compared with the width of slits or other 
apertures, so the diffraction angle θ is also small. Provided that θ is only a few 
degrees (less than about 5°), the approximation sin θ = θ may be used (remember 
that θ must be in radians!). Very often, the single-slit diffraction equation for light is 
expressed in the form

θ = nλ/a

making use of the sin θ approximation. But take care! This approximate form may 
not apply for the diffraction of other types of wave, such as sound or water waves, 
where the wavelength may be closer in magnitude to the width of the aperture, and 
diffraction angles are larger.

▲ Figure 8.34 Light intensity graph for single slit diffraction
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7 Calculate the angle between the centre of the diffraction pattern and the first minimum 

when a sound wave of wavelength 1.0 m passes through a door 1.2 m wide.

8 Calculate the wavelength of water waves which, on passing through a gap 50 cm 
wide, create a diffraction pattern such that the angle between the centre of the 
pattern and the second-order minimum is 60°.

The diffraction grating
A diffraction grating is a plate on which there is a very large number of parallel, 
identical, very closely spaced slits. If monochromatic light is incident on this plate, a 
pattern of narrow bright fringes is produced (Figure 8.35).

parallel beam of
monochromatic light
or laser light

diffraction
grating

screen

▲ Figure 8.35 Arrangement for obtaining a fringe pattern with a diffraction grating

Although the device is called a diffraction grating, we shall use straightforward 
superposition and interference ideas in obtaining an expression for the angles at which 
the maxima of intensity are obtained.

Figure 8.36 shows a parallel beam of light incident normally on a diffraction grating 
in which the spacing between adjacent slits is d. Consider first rays 1 and 2 which are 
incident on adjacent slits. The path difference between these rays when they emerge at 
an angle θ is d sin θ. To obtain constructive interference in this direction from these two 
rays, the condition is that the path difference should be a whole number of wavelengths. 
The path difference between rays 2 and 3, 3 and 4, and so on, will also be d sin θ. The 
condition for constructive interference is the same. Thus, the condition for a maximum 
of intensity at angle θ is

 d sin θ = nλ

where λ is the wavelength of the monochromatic light used, and n is an integer.

Questions

path difference = d sinq

d = slit spacingq q

light diffracted
at q to normal

1

2

3

4

5

incident light normal
to the grating

3rd order

2nd order

1st order

zero order

3rd order

2nd order

1st order

▲ Figure 8.36 ▲ Figure 8.37 Maxima in the diffraction pattern  
of a diffraction grating
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iffraction and the diffraction grating

8
When n = 0, sin θ = 0 and θ is also zero; this gives the straight-on direction, or what 
is called the zero-order maximum. When n = 1, we have the first-order diffraction 
maximum, and so on (Figure 8.37).

WORKED EXAMPLE 8D

Monochromatic light is incident normally on a grating with 7.00 × 105 lines per 
metre. A second-order maximum is observed at an angle of diffraction of 40.0°. 
Calculate the wavelength of the incident light.

Answer
The slits on a diffraction grating are created by drawing parallel lines on the surface 
of the plate. The relationship between the slit spacing d and the number N of lines per 
metre is d = 1/N. For this grating, d = 1/7.00 × 105 = 1.43 × 10 –6 m. Using nλ = d sin θ,

λ = (d/n) sin θ = (1.43 × 10–6/2) sin 40.0° = 460 nm

9 Monochromatic light is incident normally on a grating with 5.00 × 105 lines per 
metre. A third-order maximum is observed at an angle of diffraction of 78.0°. 
Calculate the wavelength of the incident light.

10 Light of wavelength 5.90 × 10–7 m is incident normally on a diffraction grating 
with 8.00 × 105 lines per metre. Calculate the diffraction angles of the first- and 
second-order diffraction images.

11 Light of wavelength 590 nm is incident normally on a grating with spacing  
1.67 × 10–6 m. How many orders of diffraction maxima can be obtained?

The diffraction grating with white light
If white light is incident on a diffraction grating, each wavelength λ making up the white 
light is diffracted by a different amount, as described by the equation d sin θ = nλ. Red 
light, because it has the longest wavelength in the visible spectrum, is diffracted through 
the largest angle. Blue light has the shortest wavelength, and is diffracted the least. Thus, 
the white light is split into its component colours, producing a continuous spectrum 
(Figure 8.38). The spectrum is repeated in the different orders of the diffraction pattern. 
Depending on the grating spacing, there may be some overlapping of different orders. 
For example, the red component of the first-order image may overlap with the blue end 
of the second-order spectrum. The angular separation of the blue and red ends of each 
spectrum is greatest for the highest order as indicated in Figure 8.38.

An important use of the diffraction grating is in a spectrometer, a piece of apparatus 
used to investigate spectra. By measuring the angle at which a particular diffracted 
image appears, the wavelength of the light producing that image may be determined.

white light

2nd
order

2nd
order

1st order 1st order

zero
order

(white)

◀ Figure 8.38 Production of the spectrum of  
white light with a diffraction grating

Questions
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END OF TOPIC QUESTIONS

1 A transverse wave has an amplitude of 2.0 cm and intensity I at a particular point P. 
A second wave of the same type and frequency as the first wave overlaps the first 
wave. At point P the second wave has an intensity of I/2. At point P the two waves 
are 180° out of phase. What is the intensity of the resultant wave at point P?

 A 0.09 I       B 0.5 I         C 1.5 I         D 2.9 I
2 Fig. 8.39 represents a stationary wave on a string PQ. All the points on the string 

are shown at their maximum displacement. What are the number of nodes (first 
number) and the number of antinodes (second number)?

 A 2, 3       B 3, 2       C 3, 4       D 4, 3

SUMMARY

» The principle of superposition of waves states that, 
when waves meet at the same point in space, the 
resultant displacement is given by the sum of the 
displacements of the individual waves.

» Constructive interference is obtained when the 
waves that meet are in phase, so that the resultant 
wave is of greater amplitude than any of its 
constituents.

» Destructive interference is obtained when the 
waves that meet are out of phase by π radians or 
180° out of phase (in antiphase).

» Interference is where two or more waves overlap 
to form a resultant wave given by the principle of 
superposition. The resultant wave may have an 
amplitude that is the same, smaller or greater than 
the overlapping waves.

» To produce a sustained and observable 
interference pattern the sources must be 
monochromatic (single frequency), same frequency 
and coherent (have a constant phase difference).

» Coherent sources have a constant phase 
difference between the vibrations of the sources.

» Coherent waves have a constant phase difference.
» Two-source interference can be demonstrated 

using water ripples, sound, light and microwaves
 For two-source interference fringes to be observed, 

the waves from the two sources must be coherent 
(constant phase difference) and must meet 
(superpose) with a path difference of nλ (n = 0, 1, 2 ...)  
or phase difference of 0, 360°, 720° ... or 0,  
2π radians, 4π radians … for maxima and  
n + 12  λ (n = 0, 1, 2 ...) or phase difference of 180°, 
540°, 900° ... or π radians, 3π radians, 5π radians ... 
for minima.

» Young’s double-slit experiment:
– condition for constructive interference: path 

difference = nλ
– condition for destructive interference: path 

difference (n + 12)λ

– wavelength can be found from λ = ax/D, where 
a is the separation of the source slits, x is the 
fringe width and D is the distance of the screen 
from the slits.

» A stationary wave is the result of the overlapping 
and hence interference between two progressive 
waves of equal frequency and similar amplitude 
travelling along the same line with the same 
speed, but in opposite directions.

» Points of zero amplitude on a stationary wave are 
called nodes; points of maximum amplitude are 
called antinodes.

» For stationary waves on a stretched string, 
frequency fn of the nth mode is given by fn = nc/2L, 
where c is the speed of progressive waves on the 
string and L is the length of the string.

» For stationary waves in a gas in a tube closed at 
one end, frequency fn of the nth mode is given by 
 fn = (2n – 1)c/4L, where c is the speed of sound in air 
and L is the length of the tube.

» The distance between two successive antinodes is 
half a wavelength.

» The distance between two successive nodes is half 
a wavelength.

» Diffraction is the spreading out of waves after 
passing through an aperture or passing the edge 
of an obstacle. There is greater diffraction when 
the size of the aperture and the wavelength of the 
wave are approximately the same.

» Properties of wave motion (diffraction and 
interference) can be observed in a ripple tank.

» Interference and diffraction of light is evidence that 
light has wave properties.

» The condition for a diffraction maximum in a 
diffraction grating pattern is d sin θ = nλ, where d 
is the grating spacing, θ is the angle at which the 
diffraction maximum is observed, n is an integer 
(the order of the image), and λ is the wavelength of 
the light.
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End of topic questions

3	 Fig.	8.40	represents	a	stationary	wave	on	a	string	PQ.	All	the	points	on	the	string	
are	shown	at	their	maximum	displacement.	What	could	be	the	phase	difference	
between	points	X	and	Y?

	 A	 0°	 	 	 	 	 	 	 B	 180°	 	 	 	 	 	 	 C	 225°	 	 	 	 	 	 	 D	 450°

 a – slit separation

D – distance from slits
 to screen

monochromatic
light source

single
slit

double
slit

screen

Da

▲	 Figure	8.41

P Q

▲	 Figure	8.39

P

Y

X

Q

▲	 Figure	8.40

4	 In	the	double-slit	interference	of	light	experiment	which	single	change	causes	the	
fringe	width	to	decrease?
A	 reduce	the	slit	separation
B	 decrease	the	width	of	each	slit
C	 decrease	the	distance	from	the	double	slit	to	the	screen	where	the	fringes		

are	observed
D	 increase	the	wavelength	of	the	light

5	 Compare	a	two-source	experiment	to	demonstrate	the	interference	of	sound	
waves	with	a	Young’s	double-slit	experiment	using	light.	What	are	the	similarities	
and	differences	between	the	two	experiments?

6	 a	 Explain	the	term	coherence	as	applied	to	waves	from	two	sources.
b	 Describe	how	you	would	produce	two	coherent	sources	of	light.
c	 A	double-slit	interference	pattern	is	produced	using	slits	separated	by	

0.45	mm,	illuminated	with	light	of	wavelength	633	nm	from	a	laser.	The	pattern	
is	projected	on	to	a	wall	2.50	m	from	the	slits.	Calculate	the	fringe	separation.

7	 Fig.	8.41	shows	the	arrangement	for	obtaining	interference	fringes	in	a	Young’s	
double-slit	experiment.	Describe	and	explain	what	will	be	seen	on	the	screen	if	the	
arrangement	is	altered	in	each	of	the	following	ways:
a	 the	slit	separation	a	is	halved,
b	 the	distance	D	from	slits	to	screen	is	doubled,
c	 the	monochromatic	light	source	is	replaced	with	a	white-light	source.
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8 State and explain four ways in which stationary waves differ from progressive waves.

9 A source of sound of frequency 2000 Hz is placed in front of a flat wall. When a 
microphone is moved away from the source towards the wall, a series of maxima 
and minima are detected.
a Explain what has happened to create these maxima and minima.
b The speed of sound in air is 340 m s–1. Calculate the distance between 

successive minima.

10 A string is stretched between two fixed supports separated by 1.20 m. Stationary 
waves are generated on the string. It is observed that two stationary wave 
frequencies are 180 Hz and 135 Hz; there is no resonant frequency between these 
two. Calculate:
a the speed of progressive waves on the stretched string,
b the lowest resonant frequency of the string.

11 Blue and red light, with wavelengths 450 nm and 650 nm respectively, is incident 
normally on a diffraction grating which has 4.0 × 105 lines per metre.
a Calculate the grating spacing.
b Calculate the angle between the second-order maxima for these wavelengths.
c For each wavelength, find the maximum order that can be observed.

12 Discuss any difference between the interference patterns formed by:
a two parallel slits 1 µm apart,
b a diffraction grating with grating spacing 1 µm, when illuminated with 

monochromatic light.

13 Light of wavelength 633 nm passes through a slit 50 µm wide. Calculate the 
angular separation between the central maximum and the first minimum of the 
diffraction pattern.

14 A string is stretched between two fixed supports 3.5 m apart. Stationary waves 
are generated by disturbing the string. One possible mode of vibration of the 
stationary waves is shown in Fig. 8.42. The nodes and antinodes are labelled N and 
A respectively.
a Distinguish between a node and an antinode in a stationary wave.
b State the phase difference between the vibrations of particles of the string at 

any two neighbouring antinodes.
c Calculate the ratio of the frequency of the mode of vibration shown in Fig. 8.42 

to the frequency of the fundamental mode of vibration of the string.
d The frequency of the mode of vibration shown in Fig. 8.42 is 160 Hz. Calculate 

the speed of the progressive waves which produced this stationary wave.

N
A

N
A

N
A

N
A

N
A

3.5 m

▲ Figure 8.42

15 A vibrating tuning fork of frequency 320 Hz is held over the open end of a resonance 
tube. The other end of the tube is immersed in water. The length of the air column is 
gradually increased until resonance first occurs. Taking the speed of sound in air as 
340 m s–1, calculate the length of the air column. (Neglect any end-correction.)

16 We can hear sounds round corners. We cannot see round corners. Both sound and 
light are waves. Explain why sound and light seem to behave differently.
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17 Fig. 8.43 shows a narrow beam of monochromatic laser light incident normally on 

a diffraction grating. The central bright spot is formed at O.

laser
light

diffraction
grating

B

O

screen

q

▲ Figure 8.43

a Write down the relationship between the wavelength λ of the light and the angle θ 
for the first diffraction image formed at B. Identify any other symbol used.

b The screen is 1.1 m from the diffraction grating and the grating has 300 lines 
per mm. The laser light has wavelength 6.3 × 10–7 m. Find the distance OB from 
the central spot to the first bright image at B.

c The diffraction grating is now replaced by one which has 600 lines per mm. 
For this second grating, calculate the distance from the central spot to the 
first bright image.

18 a State two features of a stationary wave that distinguish it from a  
progressive wave. [2]

b A long tube is open at one end. It is closed at the other end by means of a piston 
that can be moved along the tube, as shown in Fig. 8.44.

 A loudspeaker producing sound of frequency 550 Hz is held near the open end 
of the tube.

 The piston is moved along the tube and a loud sound is heard when the distance 
L between the piston and the open end of the tube is 45 cm.

 The speed of sound in the tube is 330 m s–1.
i Show that the wavelength of the sound in the tube is 60 cm. [1]
ii On a copy of Fig. 8.44, mark all the positions along the tube of:

1 the displacement nodes (label these with the letter N), [1]
2 the displacement antinodes (label these with the letter A). [2]

c The frequency of the sound produced by the loudspeaker in b is gradually 
reduced.

 Determine the lowest frequency at which a loud sound will be produced in the 
tube of length L = 45 cm. [3]

Cambridge International AS and A Level Physics (9702) Paper 22 Q4 May/June 2010

19 a A diffraction grating is used to determine the wavelength of light.
i Describe the diffraction of light at a diffraction grating. [1]
ii By reference to interference, explain:

1 the zero order maximum,
2 the first order maximum. [3]

b A diffraction grating is used with different wavelengths of light. The angle θ of 
the second order maximum is measured for each wavelength. The variation 
with wavelength λ of sin θ is shown in Fig. 8.45.

End of topic questions

pistontube

loudspeaker
L

▲ Figure 8.44
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si
n 
q

l /nm
300 350 400 450 500 550

0.10

0.20

0.30

0.40

0.50

0.60

▲ Figure 8.45

i Determine the gradient of the line shown in Fig. 8.45. [1]
ii Use the gradient determined in i to calculate the slit separation d of the 

diffraction grating. [1]
iii On a copy of Fig. 8.45, sketch a line to show the results that would be 

obtained for the first order maxima. [1]

Cambridge International AS and A Level Physics (9702) Paper 23 Q5 May/June 2017

20 Fig. 8.46 shows a string stretched between two fixed points P and Q.
string

Q

wall

P

vibrator

▲ Figure 8.46

 A vibrator is attached near end P of the string. End Q is fixed to a wall. The vibrator 
has a frequency of 50 Hz and causes a transverse wave to travel along the string at 
a speed of 40 m s–1.
a i Calculate the wavelength of the transverse wave on the string. [2]

ii Explain how this arrangement may produce a stationary wave on the  
string. [2]

b The stationary wave produced on PQ at one instant of time t is shown in  
Fig. 8.47. Each point on the string is at its maximum displacement.

P Q

▲ Figure 8.47

i On a copy of Fig. 8.47, label all the nodes with the letter N and all the 
antinodes with the letter A. [2]

ii Use your answer in a i to calculate the length of string PQ. [1]
iii On a copy of Fig. 8.47, draw the stationary wave at time (t + 5.0 ms).  

Explain your answer. [3]

Cambridge International AS and A Level Physics (9702) Paper 22 Q5 May/June 2013
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End of topic questions

21 a By reference to two waves, state:
i the principle of superposition, [2]
ii what is meant by coherence. [1]

b Two coherent waves P and Q meet at a point in phase and superpose. Wave P has 
an amplitude of 1.5 cm and intensity I. The resultant intensity at the point where 
the waves meet is 3I. Calculate the amplitude of wave Q. [2]

c The apparatus shown in Fig. 8.48 is used to produce an interference pattern on 
a screen.

a

D

double slit screen

laser light
wavelength

680 nm

▲ Figure 8.48

 Light of wavelength 680 nm is incident on a double slit. The slit separation is a. 
The separation between adjacent fringes is x. Fringes are viewed on a screen at 
distance D from the double slit. Distance D is varied from 2.0 m to 3.5 m.  
The variation with D of x is shown in Fig. 8.49.
i Use Fig. 8.49 to determine the slit separation a. [3]
ii The laser is now replaced by another laser that emits light of a shorter 

wavelength. On a copy of Fig. 8.49, sketch a possible line to show the 
variation with D of x for the fringes that are now produced. [2]

Cambridge International AS and A Level Physics (9702) Paper 22 Q5 March 2019

22 a State the principle of superposition. [2]
b An arrangement for demonstrating the interference of light is shown in Fig. 8.50.

a 22 mm

2.7 m

B

D

B

P

Q

D

B

D

B

D

B

central
bright
fringe

double slit screen

light
wavelength

610 nm

▲ Figure 8.50

 The wavelength of the light is 610 nm. The distance between the double slit and 
the screen is 2.7 m. An interference pattern of bright fringes and dark fringes 
is observed on the screen. The centres of the bright fringes are labelled B and 
centres of the dark fringes are labelled D. Point P is the centre of a particular 
dark fringe and point Q is the centre of a particular bright fringe, as shown in 
Fig. 8.50. The distance across five bright fringes is 22 mm.
i The light waves leaving the two slits are coherent. State what is meant  

by coherent. [1]
ii 1 State the phase difference between the waves meeting at Q.

2 Calculate the path difference, in nm, of the waves meeting at P. [2]

2 2.5 3.0 3.5
0

2

4

6

8

10

x/
m

m

D/m

▲ Figure 8.49
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iii Determine the distance a between the two slits. [3]
iv A higher frequency of visible light is now used. State and explain the  

change to the separation of the fringes. [1]
v The intensity of the light incident on the double slit is now increased without 

altering its frequency. Compare the appearance of the fringes after this 
change with their appearance before this change. [2]

Cambridge International AS and A Level Physics (9702) Paper 21 Q4 Oct/Nov 2018

23 a State the conditions required for the formation of a stationary wave. [2]
b The sound from a loudspeaker is detected by a microphone that is connected 

to a cathode-ray oscilloscope (c.r.o.). Fig. 8.51 shows the trace on the screen of 
the c.r.o.

1 cm

1 cm

▲ Figure 8.51

 In air, the sound wave has a speed of 330 m s–1 and a wavelength of 0.18 m.
i Calculate the frequency of the sound wave. [2]
ii Determine the time-base setting, in s cm–1, of the c.r.o. [2]
iii The intensity of the sound from the loudspeaker is now halved.  

The wavelength of the sound is unchanged. Assume that the amplitude  
of the trace is proportional to the amplitude of the sound wave. On a  
copy of Fig. 8.51, sketch the new trace shown on the screen of the c.r.o. [2]

c The loudspeaker in b is held above a vertical tube of liquid, as shown in  
Fig. 8.52.

 A tap at the bottom of the tube is opened so that liquid drains out at a constant 
rate. The wavelength of the sound from the loudspeaker is 0.18 m. The sound 
that is heard first becomes much louder when the liquid surface reaches 
level A. The next time that the sound becomes much louder is when the liquid 
surface reaches level B, as shown in Fig. 8.53.
i Calculate the vertical distance between level A and level B. [1]
ii On a copy of Fig. 8.53, label with the letter N the positions of the  

nodes of the stationary wave that is formed in the air column when  
the liquid surface is at level B. [1]

iii The mass of liquid leaving the tube per unit time is 6.7 g s–1. The tube 
has an internal cross-sectional area of 13 cm2. The density of the  
liquid is 0.79 g cm–3. Calculate the time taken for the liquid to move  
from level A to level B. [2]

Cambridge International AS and A Level Physics (9702) Paper 22 Q4 March 2018

level Aliquid

loudspeaker

tube

tab

level B

▲ Figure 8.52

liquid

level A

level B

▲ Figure 8.53
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	 9	 Electricity

Learning outcomes
By the end of this topic, you will be able to:

9.1 Electric current
1  understand that an electric current is a flow 

of charge carriers
2  understand that the charge on charge 

carriers is quantised
3 recall and use Q = It
4  use, for a current-carrying conductor, the 

expression I = Anvq, where n is the number 
density of charge carriers

9.2 Potential difference and power
1  define the potential difference across a 

component as the energy transferred per 
unit charge

2 recall and use V = W/Q
3 recall and use P = VI, P = I2R and P = V   2/R

9.3 Resistance and resistivity
1 define resistance
2 recall and use V = IR
3  sketch the I–V characteristics of a metallic 

conductor at constant temperature, a 
semiconductor diode and a filament lamp

4  explain that the resistance of a filament lamp 
increases as the current increases because 
its temperature increases

5 state Ohm’s law
6 recall and use R = ρL/A
7  understand that the resistance of a light-

dependent resistor (LDR) decreases as the 
light intensity increases

8  understand that the resistance of a negative 
temperature coefficient thermistor 
decreases as the temperature increases 
(it will be assumed that thermistors have a 
negative temperature coefficient)

Starting points
★ This topic considers fundamental ideas about electric charge and electric 

current.
★ Examples of electric currents are in household wiring and electrical 

appliances.
★ A potential difference is required for energy changes to occur in a circuit.
★ When work is done energy is transferred.
★ Power is defined as the rate at which work is done, or energy is transferred.
★ Resistance controls the flow of charge in a circuit.

AS LEVEL

9.1 Electric current
All matter is made up of tiny particles called atoms, each consisting of a positively 
charged nucleus with negatively charged electrons moving around it.

The unit of charge is the coulomb (symbol C). The charge on an electron e is 
−1.60 × 10−19 C. Normally atoms have equal numbers of positive and negative charges, 
so that their overall charge is zero. But for some atoms it is relatively easy to remove an 
electron, leaving an atom with an unbalanced number of positive charges. This is called 
a positive ion.

9.1 Electric current

482807_09_CI_AS_Phy_SB_3e_161-176.indd   161 31/05/20   10:19 PM



162

9 
E

lE
c

tr
ic

it
y

9

Robert Millikan (1868–1953) performed an experiment in 1912 to determine the charge 
on a single electron using charged oil droplets. The experimental result showed that, no 
matter what the charge on the droplets, it seemed to occur only in integer multiples of a 
particular value, which he deduced was the charge on an electron, e. The conclusion was 
that charge is not continuous but quantised, that is it exists only in discrete amounts, 
integral multiples of the charge on an electron. The photon is another example of a 
quantised physical quantity, introduced in the A Level section in Topic 22.

Since charge is quantised, ions formed by the removal or addition of electrons, from or to 
atoms, also have quantised charges of ±e, ±2e, ±3e, etc. The charge on the proton is +e.

Atoms in metals have one or more outer electrons which are not held tightly to the 
nucleus. These free (or mobile) electrons wander at random throughout the metal. 
However, when a battery is connected across the ends of the metal, the free electrons 
drift towards the positive terminal of the battery, producing an electric current.

Charge carriers in an electric current can be any charged particles. In a metal the charge 
carriers are electrons but in a solution or in a plasma (ionised gas) the charge carriers are 
positive and negative ions.

The size of the electric current is given by the rate of flow of charge. Electric current is 
an SI base quantity (see Topic 1.2). The SI base unit of current is the ampere (or amp for 
short), with symbol A. The SI units of all the other electrical quantities are derived from 
the SI base units.

A current of 3 amperes means that 3 coulombs pass a point in the circuit every second. 
In 5 seconds, a total charge of 15 coulombs will have passed the point. So, the charge Q 
that flows (in coulombs) is given by

charge = current × time

or

Q = It

nucleus

electrons

––

+

––

–

–

– –

– –

–

▲ Figure 9.1 Atoms consist of a positively charged nucleus with negative electrons outside.

neutral atom positive ion electron

––

–

–

–
– –

–

– –

–

+ + +

– –

––

–

–

– –

– –

–

▲ Figure 9.2 An atom with one or more electrons missing is a positive ion
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9.1 Electric current

when the current I is in amperes and the time t is in seconds.

The unit ampere second (A s) is called the coulomb (C). 1 C = 1 A s.

WORKED EXAMPLE 9A

The current in the filament of a torch bulb is 0.03 A. How much charge flows 
through the bulb in 1 minute?

Answer
Using Q = It, Q = 0.03 × 60 (remember the time must be in seconds), so Q = 1.8 C.

1 Calculate the current when a charge of 240 C passes a point in a circuit in a time of 
2 minutes.

2 In a silver-plating experiment, 9.65 × 104 C of charge is needed to deposit a certain 
mass of silver.

 Calculate the time taken to deposit this mass of silver when the current is 0.20 A.

3 The current in a wire is 200 mA. Calculate:

a the charge which passes a point in the wire in 5 minutes

b the number of electrons needed to carry this charge.  
(Electron charge e = − 1.60 × 10−19 C.)

Conventional current
Early studies of the effects of electricity led scientists to believe that an electric current 
is the flow of ‘something’. In order to develop a further understanding of electricity, 
they needed to know the direction of flow. It was decided that this flow in the circuit 
should be from the positive terminal of the battery or power supply to the negative. 
This current is called the conventional current, and is in the direction of flow of 
positive charge. We now know, in a metal, that the electric current is the flow of 
electrons in the opposite direction, from the negative terminal to the positive terminal. 
However, laws of electricity had become so firmly fixed in the minds of people that the 
idea of conventional current has persisted. But be warned! Occasionally we need to 
take into account the fact that electron flow is in the opposite direction to conventional 
current, for example, in Topic 20.2 when determining the direction of the force on a 
charge or current-carrying conductor in a magnetic field.

Conduction in a current-carrying conductor
Figure 9.3 shows part of a conductor of cross-sectional area A through which there is a 
current I. In Figure 9.3a the charge carriers are positive and in Figure 9.3b the charge 
carriers are negative. The current in each of the conductors is from right to left but the 
charge carriers move in opposite directions as shown by the average drift speed, v.

a) positive charge carriers

Ipositive charge carriers
A

x

q q q q q

qq q q
v

b) negative charge carriers

I

x

negative charge carriers

q

q q q q q

q q q

A

v

▲ Figure 9.3 Conduction in a current-carrying conductor

Questions
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The current is due to the movement of the charge carriers along the conductor. The flow 
of charge carriers is characterised by an average drift speed. The average drift speed of the 
charge carriers in the conductor is v and the number density (the number per unit volume) 
of the charge carriers is n. The charge on each of the charge carriers is q. (See Figure 9.3a.)

The number of charge carriers in a length x of the conductor is Axn. The amount of 
charge that leaves this volume through the left-hand side of the conductor in a time t is 
Axnq.

Where the time interval t is x/v

the current I = charge/time = (Axnq)/(x/v)

Therefore,

I = Anvq

The same expression is obtained if the negative charge carriers are considered in the 
conductor shown in Figure 9.3b.

WORKED EXAMPLE 9B

A copper wire has 8.5 × 1028 charge carriers (free electrons) m−3. The wire has a 
current of 2.0 A and a cross-sectional area of 1.2 mm2. Calculate the average drift 
speed of the electrons.

Answer

v = I
nAe

 = 2
(8.5 × 1028 × 1.2 × 10−6 × 1.6 × 10−19)

      = 1.2 × 10−4 m s−1

4 The average drift speed of the electrons in a metal wire is 6.5 × 10−4 m s−1 when the 
current is 0.80 A. The diameter of the wire is 0.50 mm. Calculate the number of ‘free’ 
electrons per unit volume in the wire (number density).

9.2 Potential difference and power
A cell makes one end of the circuit positive and the other negative. The cell is said to 
set up a potential difference across the circuit. Potential difference (p.d. for short) is 
measured in volts (symbol V), and is often called the voltage. You should never talk 
about the potential difference or voltage through a device, because it is in fact a difference 
across the ends of the device. The potential difference provides the energy to move 
charge through the device.

The potential difference between any two points in a circuit is a measure of the energy 
transferred, or the work done, by each coulomb of charge as it moves from one point to 
the other. We already know that the unit of potential difference is the volt (V). Energy W 
is measured in joules, and charge Q in coulombs.

potential difference = energy transferred (or work done) 
charge

or

Question

V = 
W
Q
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The unit of potential difference, a joule coulomb−1 is called a volt (V). 1 V = 1 J C−1.

We can rearrange this equation to get an expression for the energy transferred or 
converted when a charge Q is moved through a potential difference V:

energy transferred (work done) = potential difference × charge

W = VQ

In Figure 9.4, one lamp is connected to a 240 V mains supply and the other to a 12 V  
car battery. Both lamps have the same current, yet the 240 V lamp glows more brightly. 
This is because the energy supplied to each coulomb of charge in the 240 V lamp is  
20 times greater than for the 12 V lamp.

▲ Figure 9.4 A 240 V, 100 W mains lamp is much brighter than a 12 V, 5 W car light, but both 
have the same current. (Do not try this experiment yourself as it involves a large voltage.)

WORKED EXAMPLE 9C

Electrons in a particular television tube are accelerated by a potential difference of 20 kV 
between the filament and the screen. The charge of the electron is −1.60 × 10−19 C.

Calculate the gain in kinetic energy of each electron.

Answer
Since V = W/Q, then W = VQ. The energy is transferred to the electron increasing its 
kinetic energy. Thus,

kinetic energy gained = VQ = 20 × 103 × 1.60 × 10−19

   = 3.2 × 10−15 J

(Don’t forget to convert the 20 kV into volts.)

5 An electron in a particle accelerator is accelerated through a potential difference of 
106 V. Calculate the energy, in joules, gained by the electron.

6 A torch bulb is rated 2.2 V, 0.25 A. Calculate:

a the charge passing through the bulb in one second

b the energy transferred by the passage of each coulomb of charge.

Questions
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Electrical power
In Topic 5.1 we defined power P as the rate of doing work, or of transferring energy, 
P = W/t.

The definition of potential difference V gives energy transferred per unit charge, 
V = W/Q.

Therefore, P = VQ/t

and since Q/t = I

P = VI

power = potential difference × current

The power is measured in watts (W) when the potential difference is in volts (V) and 
the current is in amperes (A). A voltmeter can measure the p.d. across a device and an 
ammeter the current through it; the equation above can then be used to calculate the 
power in the device.

9.3 Resistance and resistivity
Connecting wires in circuits are often made from copper, because copper offers little 
opposition to the movement of electrons. The copper wire is said to have a low electrical 
resistance. In other words, copper is a good conductor.

Some materials, such as plastics, are poor conductors. These materials are said to be 
insulators, because under normal circumstances they conduct little or no current.

The resistance R of a conductor is defined as the ratio of the potential difference V 
across the conductor to the current I in it.

or

R = 
V
I

where the resistance is in ohms when the potential difference is in volts and the current 
in amperes. The unit of resistance, a volt ampere−1 is called an ohm (Ω). The symbol for 
ohms is the Greek capital letter omega, Ω. 1 Ω = 1 V A−1.

We have defined resistance for a conductor, but many devices have resistance. 
The general term for such a device is a resistor. (Note that the resistance of a resistor  
is measured in ohms, just as the volume of a tank is measured in m3. We do not refer to 
the ‘m3’ of a tank, or to the ‘ohms’ of a resistor.)

The relationship between resistance, potential difference and current means that, for 
a given potential difference, the resistance controls the size of the current in a circuit. 
A high resistance means a small current, while a low resistance means a large current.

WORKED EXAMPLE 9D

The current in an electric immersion heater in a school experiment is 6.3 A when the 
p.d. across it is 12 V. Calculate the resistance of the heater.

Answer
Since R = V/I, the resistance R = 12/6.3 = 1.9 Ω.

482807_09_CI_AS_Phy_SB_3e_161-176.indd   166 31/05/20   10:20 PM



167

9.3 R
esistance and resistivity

9
7 The current in a light-emitting diode is 20 mA when it has a potential difference of 

2.0 V across it. Calculate its resistance.

Electrical heating
When an electric current passes through a resistor, it gets hot. This heating effect is 
sometimes called Joule heating. The electrical power P produced (dissipated) is given by 
P = VI. We can obtain two alternative expressions for power in terms of the resistance R 
of the resistor. Since R = V/I, then

P = I2R

and

P = 
V2 

R

For a resistor of constant resistance, the power dissipated depends on the square of the 
current. Therefore, if the current is doubled (by doubling the voltage across the resistor), 
the power will be four times as great. Hence, a doubling of voltage, doubles the current 
and this increases the power by a factor of four.

WORKED EXAMPLE 9E

1 An electric immersion heater used in a school experiment has a current of 6.3 A 
when the p.d. across it is 12 V. Calculate the power of the heater.

2 The p.d. across the immersion heater in question 1 is reduced to 6.0 V. Calculate 
the new power of the heater (assume the resistance of the heater remains 
constant).

Answers
1 Since P = VI, power = 12 × 6.3 = 76 W.
2 Since the resistance is constant the power is proportional to the square of the 

potential difference (P = V2/R). 
The p.d. V is halved hence the power is reduced by  1 

2  
2
 or 76/4 = 19 W.

8 Show that a 100 W lamp connected to a mains supply of 240 V will have the same 
current as a 5 W car lamp connected to a 12 V battery. (See Figure 9.4.)

9 An electric kettle has a power of 2.2 kW at 240 V. Calculate:

a the current in the kettle

b the resistance of the kettle element.

Current–voltage (I–V) characteristics
The relationship between the potential difference across an electrical component and the 
current through it may be investigated using the circuit of Figure 9.5 shown overleaf. 
For example, if a filament lamp is to be investigated, adjust the power supply for a 
range of potential differences and measure the corresponding currents in and potential 
differences across the lamp. The variation of current with potential difference is shown 
in Figure 9.6. This graph is known as an I–V characteristic.

Question

Questions
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The resistance R of the lamp can be calculated from R = V/I. At first, the resistance is 
constant (where the graph is a straight line through the origin), but then the resistance 
increases with current (where the graph curves).

If the lamp is replaced by a length of constantan wire, the graph of the results is 
as shown in Figure 9.7. It is a straight line through the origin. This shows that, for 
constantan wire, the current is proportional to the potential difference. The resistance  
of the wire is found to be constant as the current increases. The difference between 
Figures 9.6 and 9.7 is that the temperature of the constantan wire was constant for all 
currents used in the experiment, whereas the temperature of the filament of the lamp 
increased to about 1500°C as the current increased.

Ohm’s law
Graphs like Figure 9.7 would be obtained for wires of any metal, provided that the 
temperature of the wires did not change during the experiment. The graph illustrates a 
law discovered by the German scientist Georg Simon Ohm (Figure 9.8). (Ohm’s name is 
now used for the unit of resistance.)

Ohm’s law states that, for a metallic conductor at constant temperature, the 
current in the conductor is proportional to the potential difference across it.

Conductors where the current against potential difference graph is a straight line 
through the origin, like that in Figure 9.7, are said to obey Ohm’s law. It is found that 
Ohm’s law applies to metal wires, provided that the current is not too large. What does 
‘too large’ mean here? It means that the current must not be so great that there is a 
pronounced heating effect, causing an increase in temperature of the wire.

A lamp filament consists of a thin metal wire. Why does it not obey Ohm’s law?  
(Figure 9.6 shows that the current against potential difference graph is not a straight 
line.) This is because, as stated previously, the temperature of the filament does 
not remain constant. The increase in current causes the temperature to increase so 
much that the filament glows. The reason for this is explained opposite in the section 
Resistance and temperature,

Current–voltage characteristics of a diode
When a diode is tested in the same way as the filament lamp (see the circuit in 
Figure 9.5), the current–potential difference graph shown in Figure 9.9 is obtained. 
Diodes are made from semiconducting material. The diode conducts when the current 

variable voltage supply

A

V

▲ Figure 9.5 Circuit 
for plotting graphs 
of current against 
potential difference for 
a circuit component

0

cu
rr

en
t

potential
difference

▲ Figure 9.6 Current 
against potential 
difference for a filament 
lamp

0

cu
rr

en
t

potential
difference

▲ Figure 9.7 Current 
against potential 
difference for a 
constantan wire

▲ Figure 9.8 Georg Ohm 
(1789–1854)

0

cu
rr

en
t

potential
difference

circuit symbol for a diode

0.5 V

▲ Figure 9.9 Current 
against potential 
difference for a diode
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is in the direction of the arrowhead on the symbol. This condition is called forward 
bias. The potential on the left-hand side of the diode is more positive than the potential 
on the right-hand side. When the potential difference is reversed, there is negative bias. 
This is called reverse bias. Figure 9.9 shows this important difference in the current–
potential difference graph when the p.d. is reversed. The diode does not conduct when 
in the reverse bias condition. As a result, diodes are used to change alternating current 
into direct current in devices called rectifiers (see Topic 21.2).

Diodes do not obey Ohm’s law. The resistance of the diode is very high for low voltages 
in the forward bias condition. The diode conducts with a forward bias voltage of about 
0.5 V. The resistance of the diode decreases as the voltage is increased with forward bias. 
The straight line part of the graph in this region does not follow Ohm’s law as the line 
does not go through the origin and, therefore, the resistance is not constant. The current 
is not proportional to the p.d.

Resistance and temperature
All solids are made up of atoms that constantly vibrate about their equilibrium 
positions. The higher the temperature, the greater the amplitude of vibration.

Electric current is the flow of electrons through a metal. As the electrons move, they 
collide with the vibrating metal ions, so their movement is impeded. The more the ions 
vibrate, the greater is the chance of collision. This means that the current is less and the 
resistance of metals increases with temperature.

EXTENSION

A temperature rise can cause an increase in the number of free electrons. If there 
are more electrons free to move, this may outweigh the effect due to the vibrating 
ions, and thus the flow of electrons, or the current, will increase. The resistance 
is therefore reduced. This is the case in semiconductors. Insulators, too, show a 
reduction in resistance with temperature rise.

For metals there is no increase in the number of free electrons. The increased amplitude 
of vibration of the atoms makes the resistance of metals increase with temperature.

Resistivity
All materials have some resistance to a flow of charge. A potential difference across  
the material causes free charges inside to accelerate. As the charges move through the 
metal, they collide with the fixed vibrating ions of the metal which get in their way.  
They transfer some or all of their kinetic energy, and then accelerate again due to the 
potential difference across the material. It is this transfer of energy on collision that 
causes electrical heating in a resistor.

As you may have thought, the longer a wire, the greater its resistance. This is because 
the charges have further to go through the metal; there is more chance of collisions with 
the fixed vibrating ions. In fact the resistance of a conductor is proportional to its length, 
or R ∝ L. Also, the thicker a conductor, the smaller its resistance. This is because there 
is a bigger area for the charges to travel through, with less chance of collision. In fact 
the resistance is inversely proportional to the cross-sectional area of the conductor, or 
R ∝ 1/A.

These relations are illustrated by the analogy for a metal wire in Figures 9.10 and 9.11 
(overleaf). The waiter delivering his order represents an electron attracted to the positive 
terminal and the other people represent the lattice of positive ions in a metal. In each 
case the overall ‘number density’ of people (the number per unit volume) is the same 
(since the rooms represent the same type of material).
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▲ Figure 9.11 The wider the room, the easier it is for the waiter to pass through.

Finally, the resistance depends on the type of material. As previously stated, copper is a 
good conductor, whereas plastics are good insulators. Putting all of this together gives

R = 
ρL 

A

where ρ is a constant for a particular material at a particular temperature. ρ is called the 
resistivity of the material at that temperature and is defined by

ρ = RA 

L
The resistance is in ohms, the cross-sectional area in metres squared and the length in 
metres, hence the unit of resistivity is the ohm metre (Ω m).

Remember that A is the cross-sectional area through which the current is passing, not 
the surface area.

We have already seen that the resistance of a wire depends on temperature. 
Thus, resistivity also depends on temperature. The resistivity of a metal increases with 
increasing temperature, and the resistivity of a semiconductor decreases very rapidly 
with increasing temperature.

The values of the resistivity of some materials at room temperature are given in Table 9.1. 
Note the enormous range of resistivity spanned by the materials in this list – a range of  
23 orders of magnitude, from 10−8 Ω m to 1015 Ω m.

Note, too, that the resistivity is a property of a material, while the resistance is a 
property of a particular wire or device.

material resistivity 
/Ω m

metals
copper 1.7 × 10−8

gold 2.4 × 10−8

aluminium 2.6 × 10−8

semiconductors
germanium 
(pure) 

0.6

silicon (pure) 2.3 × 103

insulators
glass about 1012

perspex about 1013

polyethylene about 1014

sulfur about 1015

▲ Table 9.1 Resistivity of 
some materials at room 
temperature

▲ Figure 9.10 The longer the room, the greater the resistance the waiter meets.
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10 Find the length of copper wire, of diameter 0.63 mm, which has a resistance of 1.00 Ω.

 The resistivity of copper at room temperature is 1.7 × 10−8 Ω m.

11 Find the diameter of a copper wire which has the same resistance as an aluminium 
wire of equal  length and diameter 1.20 mm. The resistivities of copper and 
aluminium at room temperature are 1.7 × 10−8 Ω m and 2.6 × 10−8 Ω m respectively.

The light-dependent resistor (LDR)
A light-dependent resistor (LDR) consists of two metal grids that intersect each other. 
The space between the grids is filled with a semiconductor material, for example, 
cadmium sulfide doped with copper, as shown in Figure 9.12.

When light is incident on the semiconductor material, the number of electrons in the 
semiconductor that are free to conduct increases. The higher the intensity of light on 
the LDR, the greater the number of electrons that can move freely. Hence, as the light 
intensity increases, the resistance of the LDR decreases. Figure 9.13 shows the variation 
with light intensity of the resistance of a typical LDR.

1000

100

10

1.0

0.1
10 0001000100101.00.1

light intensity/lux
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si

st
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ce
/k

Ω

▲ Figure 9.13 Resistance versus light intensity for an LDR

Note: Both light intensity, measured in lux, and resistance, measured in ohms, are 
plotted on logarithmic scales in Figure 9.13. The graph is a straight line but this does 

a)

b)

▲ Figure 9.12 An LDR and 
its symbol

Questions

WORKED EXAMPLE 9F

Calculate the resistance per metre at room temperature of a constantan wire of 
diameter 1.25 mm. The resistivity of constantan at room temperature is 5.0 × 10−7 Ω m.

Answer
The cross-sectional area of the wire is calculated using πr2.

Area = π ×





1.25 10
2

3
2

-  = 1.23 × 10−6 m2

(Don’t forget to change the units from mm to m.)

The resistance per metre is given by R/L, and R/L = ρ/A. So

resistance per metre = 5.0 × 10−7

(1.23 × 10−6)
 = 0.41 Ω m−1
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not mean that resistance is inversely proportional to light intensity. Data relating to light 
intensity and resistance for a typical LDR is shown in Table 9.2.

light level illumination/lux LDR resistance/Ω
moonlight 0.1 1 × 106

normal room lighting 450 900
sunlight 28 000 100

▲ Table 9.2 Typical LDR data

The lux is a unit that is used to measure the light power incident per unit area of a surface.

The thermistor
The resistance of most metals increases to a certain extent with rise in temperature. 
Negative temperature coefficient devices, often referred to as thermistors, are made 
from semiconductor material, usually the oxides of metals. The resistance of thermistors 
decreases significantly with rise in temperature. Thermistors are manufactured in 
various shapes and sizes, including rods, discs and beads. Figure 9.14a shows an 
example of a disc and bead thermistor.

Data relating to the temperature and resistance of a typical bead thermistor is shown in 
Table 9.3.

temperature/°C thermistor resistance/Ω

1 3700

10 2500

20 1800

30 1300

40 900

50 660

▲ Table 9.3 Typical thermistor data

The variation with temperature of a typical thermistor is shown in Figure 9.15. This variation 
is non-linear and is, in fact, approximately exponential over a limited range of temperature.
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▲ Figure 9.15 Resistance versus temperature for a thermistor

a)

b)

▲ Figure 9.14 Thermistors 
and their symbol

a)

b)

a)

b)
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12 a Draw a sketch graph to show the variation with temperature θ of the resistance R 
of a thermistor. Mark typical values on the axes of your graph.

b Draw a sketch graph to show the variation with light intensity L of the resistance 
R of an LDR. Mark typical values on the axes of your graph.

Question

WORKED EXAMPLE 9G

Explain what is meant by a negative temperature coefficient thermistor.

Answer
It is an electrical device whose resistance decreases as its temperature increases.

SUMMARY

» Electric current is the rate of flow of charge: I = Q/t.
» Charge carriers can be positive or negative.
» Conventional current is defined as a flow of 

positive charge from positive to negative. In 
metals, the charge carriers are electrons, which 
travel from negative to positive.

» Charge on charge carriers is quantised in integer 
multiples of the fundamental charge on the 
electron, e, 1.6 × 10−19 C.

» The coulomb is the unit of charge and 1 coulomb is 
equivalent to an ampere second.

» Charge can be calculated using Q = It.
» For a current-carrying conductor I = Anvq, where 

n is the number density of charge carriers and v is 
the mean drift speed of charge carriers.

» Potential difference is defined as the energy 
transferred per unit of charge: V = W/Q.

» The volt is the unit of potential difference and 1 volt 
is equivalent to 1 joule per coulomb.

» Resistance R of a resistor is defined as: R = V/I.
» The ohm is the unit of resistance and is a volt per 

ampere.
» Electrical power P = VI = I 2R = V 2/R.
» Ohm’s law: for a metallic conductor 

at constant temperature, the current in the 
conductor is proportional to the potential 
difference across it.

» The I–V characteristic of an electrical component 
is a graph of current against potential difference; 
the shape of the graph is characteristic for 
different components.

» For a metallic conductor at constant temperature 
the I–V graph is a straight line through the origin, 
showing it obeys Ohm’s law.

» The I–V graph for a filament lamp has a constant 
gradient for low voltages and a decreasing 
gradient (showing an increase in resistance) for 
higher voltages, hence the filament does not obey 
Ohm’s law.

» The I–V graph for a diode has a zero current 
for reverse bias (very high resistance). For low 
voltages in forward bias the current is still zero. 
As the voltage increases (above about 0.5 V) the 
current in the diode increases. The graph is 
almost a straight line. However, the resistance is 
not constant but is decreasing showing that the 
diode does not obey Ohm’s law.

» The resistance of a metallic conductor increases 
with increasing temperature; the resistance 
of a semiconductor decreases with increasing 
temperature.

» The resistance of a filament in a lamp increases 
with increasing current because higher currents 
cause the temperature of the filament to increase.

» A diode has a low resistance when connected in 
forward bias, and a very high resistance in reverse 
bias.

» Resistivity ρ of a conductor of length L and cross-
sectional area A is given by the equation: R = ρL/A.

» The resistance of an LDR decreases as the light 
intensity on it increases.

» The resistance of a negative temperature 
coefficient thermistor decreases with increasing 
temperature.

482807_09_CI_AS_Phy_SB_3e_161-176.indd   173 31/05/20   10:20 PM



174

9 
E

lE
c

tr
ic

it
y

9
END OF TOPIC QUESTIONS

1 Fig. 9.16 shows a circuit with two resistors, R1 and R2, in series connected to a cell. 
The resistors are metal wires made of the same material and are of the same 
length. The diameter of R1 is twice the diameter of R2. The drift velocity of the 
electrons in R1 is v1 and the drift velocity of the electrons in R2 is v2.

 Which of the following answers gives the correct ratio v1/v2?
A 0.25 B 0.50 C 1.0 D 4.0

2 Fig. 9.17 shows a cell connected to  two resistors P and Q that are connected in 
parallel. The resistors are metal wires made of the same material. The length of 
P is L and the length of Q is 2L. The diameter of P is d/2 and the diameter of Q is d. 
The current through P is I1 and the current through Q is I2.

 What is the ratio I1/ I2?
A 0.13 B 0.25 C 4.0 D 8.0

P

Q

I1

I2

▲ Figure 9.17

3 Fig. 9.18 show a cell of e.m.f. 6 V connected to two resistors of 2 Ω and 4  Ω. In a) the 
resistors are in parallel and b) the resistors are in series. In which of the resistor’s 
positions A, B, C or D is the smallest power transferred?

A

B

C D
2 Ω

2 Ω

4 Ω

4 Ω

6 V
a) b)

6 V

▲ Figure 9.18

4 A 240 V heater takes a current of 4.2 A. Calculate:
a the charge that passes through the heater in 3 minutes,
b the rate at which heat energy is produced by the heater,
c the resistance of the heater.

5 A small torch has a 3.0 V battery connected to a bulb of resistance 15 Ω.
a Calculate:

i the current in the bulb,
ii the power delivered to the bulb.

b The battery supplies a constant current to the bulb for 2.5 hours. Calculate the 
total energy delivered to the bulb.

6 The capacity of storage batteries is rated in ampere-hours (A h). An 80 A h battery 
can supply a current of 80 A for 1 hour, or 40 A for 2 hours, and so on. Calculate the 
total energy, in J, stored in a 12 V, 80 Ah car battery.

7 An electric kettle is rated at 2.2 kW, 240 V. The supply voltage is reduced from 240 V 
to 230 V.

 Calculate the new power of the kettle.

R1 R2

▲ Figure 9.16
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9
8 The element of an electric kettle has resistance 26 Ω at room temperature.  

The element is made of nichrome wire of diameter 0.60 mm and resistivity 
1.1 × 10−6 Ω m at room temperature. Calculate the length of the wire.

9 The values of the current I through an electrical component for different potential 
differences V across it are shown in Fig. 9.19.

V/V 0 0.19 0.48 1.47 2.92 4.56 6.56 8.70
I/A 0 0.20 0.40 0.60 0.80 1.00 1.20 1.40

▲ Figure 9.19

a Draw a diagram of the circuit that could be used to obtain these values.
b Calculate the resistance of the component at each value of current.
c Plot a graph to show the variation with current of the resistance of the component.
d Suggest what the component is likely to be, giving a reason for your answer.

10 The current in a 2.50 m length of wire of diameter 1.5 mm is 0.65 A when a potential 
difference of 0.40 V is applied between its ends. Calculate:
a the resistance of the wire,
b the resistivity of the material of the wire.

11 a The output of a heater is 2.5 kW when connected to a 220 V supply.
i Calculate the resistance of the heater.  [2]
ii The heater is made from a wire of cross-sectional area 2.0 × 10−7 m2 and 

resistivity 1.1 × 10−6 Ω m.
 Use your answer in i to calculate the length of the wire. [3]

b The supply voltage is changed to 110 V.
i Calculate the power output of the heater at this voltage, assuming there is 

no change in the resistance of the wire. [1]
ii State and explain quantitatively one way that the wire of the heater could be 

changed to give the same power as in a. [2]

Cambridge International AS and A Level Physics (9702) Paper 21 Q4 May/June 2012

12 a Define charge. [1]
b A heater is made from a wire of resistance 18.0 Ω and is connected to a power 

supply of 240 V. The heater is switched on for 2.60 Ms.
 Calculate:

i the power transformed in the heater, [2]
ii the current in the heater, [1]
iii the charge passing through the heater in this time, [2]
iv the number of electrons per second passing a given point in the heater. [2]

Cambridge International AS and A Level Physics (9702) Paper 22 Q6 May/June 2013

13 Wires are used to connect a battery of negligible internal resistance to a lamp, as 
shown in Fig. 9.20.

 The lamp is at its normal operating temperature. Some data for the filament wire 
of the lamp and for the connecting wires of the circuit are shown in Fig. 9.21.

filament wire connecting wires
diameter d 14d

total length L 7.0L

resistivity of metal (at normal 
operating temperature)

ρ 0.028ρ

▲ Figure 9.21

i Show that 
resistance of filament wire

total resistance of connecting wires
 = 1000 [2]

wire

wire

▲ Figure 9.20

End of topic questions
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9
ii Use the information in i to explain qualitatively why the power dissipated in 

the filament wire of the lamp is greater than the total power dissipated in the 
connecting wires. [1]

iii The lamp is rated as 12 V, 6.0 W. Use the information in i to determine the total 
resistance of the connecting wires. [3]

iv The diameter of the connecting wires is decreased. The total length of the 
connecting wires and the resistivity of the metal of the connecting wires remain 
the same. State and explain the change, if any, that occurs to the resistance of 
the filament wire of the lamp. [3]

Cambridge International AS and A Level Physics (9702) Paper 21 Q7 part b only Oct/Nov 2017

14 a Describe the I–V characteristic of:
i a metallic conductor at constant temperature, [1]
ii a semiconductor diode. [2]

b Two identical filament lamps are connected in series and then in parallel to a 
battery of electromotive force (e.m.f.) 12 V and negligible internal resistance, as 
shown in Fig. 9.22a and Fig. 9.22b.

12 V 12 V
a) b)

▲ Figure 9.22

 The I–V characteristic of each lamp is shown in Fig. 9.23.

V /V

I/
A

2 4 6 8 12
0

2

4

6

10

▲ Figure 9.23

i Use the information shown in Fig. 9.23 to determine the current through the 
battery in:
1 the circuit of Fig. 9.22a,
2 the circuit of Fig. 9.22b. [3]

ii Calculate the total resistance in:
1 the circuit of Fig. 9.22a,
2 the circuit of Fic 9.22b. [3]

iii Calculate the ratio:

 

power dissipated in a lamp in the circuit of Fig. 9.22a
power dissipated in a lamp in the circuit of Fig. 9.22b  [2]

Cambridge International AS and A Level Physics (9702) Paper 23 Q6 May/June 2017
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10.1 Practical circuits

Learning outcomes
By the end of this topic, you will be able to:

10.1 Practical circuits
1  recall and use the appropriate circuit 

symbols for this syllabus
2  draw and interpret circuit diagrams 

containing power sources, switches, 
resistors, ammeters and voltmeters and/or 
any other type of component referred to in 
the syllabus

3  define and use the electromotive force 
(e.m.f.) of a source as energy transferred 
per unit charge in driving charge around a 
complete circuit

4  distinguish between e.m.f. and potential 
difference (p.d.) in terms of energy 
considerations

5  understand the effects of the internal 
resistance of a source of e.m.f. on the 
terminal potential difference

10.2 Kirchhoff’s laws
1  recall Kirchhoff’s first law and understand 

that it is a consequence of conservation of 
charge

2  recall Kirchhoff’s second law and 
understand that it is a consequence of 
conservation of energy

3  derive, using Kirchhoff’s laws, a formula 
for the combined resistance of two or more 
resistors in series

4  use the formula for the combined 
resistance of two or more resistors in 
series

5  derive, using Kirchhoff’s laws, a formula 
for the combined resistance of two or more 
resistors in parallel

6  use the formula for the combined resistance 
of two or more resistors in parallel

7  use Kirchhoff’s laws to solve simple circuit 
problems

10.3 Potential dividers
1  understand the principle of a potential 

divider circuit
2  recall and use the principle of the 

potentiometer as a means of comparing 
potential differences

3  understand the use of a galvanometer in 
null methods

4  explain the use of thermistors and light-
dependent resistors in potential dividers 
to provide a potential difference that 
is dependent on temperature and light 
intensity

Starting points
★ Basic knowledge of appropriate circuit symbols.
★ Methods for drawing and interpreting circuit diagrams.
★ Electric current is the rate of flow of charge.
★ A potential difference is required to provide energy to move charge through  

a device.
★ The p.d. V across a component and the current I through it are related by  

V = IR where R is its resistance.

AS LEVEL

D.C. circuits 10 

10.1 Practical circuits
When reporting an electrical experiment, or describing a circuit, it is essential to know 
exactly how the components are connected. This could be done by taking a photograph, 
but this technique has disadvantages. The photograph in Figure 9.4, for example, is not 
clear and does not show all the components. You could sketch a block diagram, in which 
the components are indicated as rectangular boxes labelled ‘cell’, ‘ammeter’, ‘resistor’, etc. 
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When a potential difference (p.d.) is applied across a resistor, charge passes through 
the resistor. The energy of the charge is converted to thermal energy in the resistor. As 
we saw in Topic 9.2, the potential difference measures, in volts, the energy transferred 
per unit of charge that passes through the resistor.

p.d. = energy transferred per unit charge

cell switch lamp fixed resistor

heater

variable
resistor

light-dependent 
resistor

thermistor

A

ammeter

V

voltmeter

galvanometer

diode light-emitting
diode

oscilloscope junction
of conductors

motor

power supply

earth microphonebattery of cells

or

electric bell buzzer loudspeaker

generator

G M

potentiometer

▲	 Figure 10.1 Circuit	symbols

Electromotive	force	and	potential	difference
When charge passes through a power supply such as a battery, there is a transfer of 
energy. The power supply is said to have an electromotive force, or e.m.f. for short. 
The e.m.f. is a property of the power supply, battery or cell. The electromotive force 
measures, in volts, the energy transferred per unit of charge that passes through the 
power supply. Note that, in spite of its name, the e.m.f. is not a force. The energy gained 
by the charge comes from the chemical energy of a battery.

e.m.f. = 
energy transferred from other forms to electrical in driving charge around a complete circit

charge

The blocks would then be connected with lines to indicate the wiring. This is also 
unsatisfactory; it takes a lot of time to label all the boxes. It is much better to draw the 
circuit diagram using a set of symbols that is recognised by everyone and which do not 
need to be labelled.

Figure 10.1 shows the symbols that you are likely to need in school and college work, 
and which you will meet in examination questions. (You will have met many of them 
already.) It is important that you learn these so that you can recognise them straight 
away. The only labels you are likely to see on them will be the values of the components, 
for example, 1.5 V for a cell or 22 Ω for a resistor.
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10.1 Practical circuits

10
WORKED EXAMPLE 10A

  Two lamps are connected in series to a battery. State the energy transformation that 
occurs in
a the battery
b the lamps.

Answers
 a chemical to electrical
b electrical to thermal (heat) and light

1 Each lamp in the example above has a resistance R and the e.m.f. of the battery is E. 
The current in the circuit is I. State the rate of energy transformation in:

a the battery

b a lamp.

Internal resistance
When a car engine is started with the headlights switched on, the headlights sometimes 
dim. This is because the car battery has resistance.

All power supplies have some resistance between their terminals, called internal 
resistance. When a power supply delivers a current the charge passing around the 
circuit dissipates some of its electrical energy as thermal energy in the power supply 
itself. The power supply becomes warm when it delivers a current.

E

I power
supplyload

R

VR

VR

r

▲ Figure 10.2

Figure 10.2 shows a power supply which has e.m.f. E and internal resistance r. It delivers 
a current I when connected to an external resistor of resistance R (called the load).  
VR is the potential difference across the load, and Vr is the potential difference across  
the internal resistance. Using conservation of energy,

E = VR + Vr

The potential difference VR across the load is thus given by

VR = E – Vr

VR is also the terminal potential difference across the power supply.

The terminal potential difference is the p.d. between the terminals of a cell or 
power supply when a current is being delivered.

Question
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10
The terminal potential difference is always less than the electromotive force when the 
power supply delivers a current. This is because of the potential difference across the 
internal resistance. 

p.d. across the internal resistance = e.m.f. – terminal p.d.

The electromotive force is the terminal potential difference when the power supply is 
on open circuit (when no current is delivered). The p.d. across the internal resistance 
Vr is zero (Vr = Ir = 0). The e.m.f. may be measured by connecting a very high resistance 
voltmeter across the terminals of the power supply.

You can use the circuit in Figure 10.3 to show that the greater the current delivered by the 
power supply, the lower its terminal potential difference. As more lamps are connected 
in parallel to the power supply, the current increases and the p.d. across the internal 
resistance, is given by

p.d. across the internal resistance = current × internal resistance

will increase. Thus the terminal potential difference decreases.

To return to the example of starting a car with its headlights switched on, a large current 
(perhaps 100 A) is supplied to the starter motor by the battery. There will then be a large 
potential difference across the internal resistance of the battery; that is, the lost voltage 
will be large. The terminal potential difference will drop and the lights will dim. They 
return to normal brightness once the engine starts. This is because the starter motor is 
automatically disconnected when the engine starts.

In the terminology of Figure 10.2, VR = IR and Vr = Ir, so E = VR + Vr becomes

E = IR + Ir, or E = I(R + r)

The e.m.f. E and internal resistance r of a cell or battery may be measured using the 
circuit shown in Figure 10.4. The high resistance voltmeter measures the p.d. V across 
the terminals of the battery. The current I in the circuit is varied using the variable 
resistor (rheostat). The terminal p.d. decreases as the current supplied by the battery 
increases and the p.d. across the internal resistance increases. A set of readings for V 
and I is measured. A graph of terminal p.d. V is plotted against the current I supplied by 
the battery (see Figure 10.5). The graph is a straight line with a negative gradient and a 
positive intercept on the V axis. The equation of the line is given by: terminal p.d. = e.m.f. 
– p.d. across the internal resistance, or V = E – Ir. This is an equation of a straight line of 
the form y = mx + c.

Hence the gradient is –r and the intercept is E.

The maximum current that a power supply can deliver will be when its terminals are 
short-circuited by a wire of negligible resistance, so that R = 0. In this case, the potential 
difference across the internal resistance will equal the e.m.f. of the cell. The terminal 
p.d. is then zero. Warning: do not try out this experiment, as the wire gets very hot; 
there is also a danger of the battery exploding.

Quite often, in problems, the internal resistance of a supply is assumed to be negligible, 
so that the potential difference VR across the load and the terminal p.d. are equal to the 
e.m.f. of the power supply.

Effect of internal resistance on power from a battery
The power delivered by a battery to a variable external load resistance can be 
investigated using the circuit of Figure 10.6. Readings of current I and potential 
difference VR across the load are taken for different values of the variable load resistor. 

V

A

▲ Figure 10.3 Effect 
of circuit current on 
terminal potential 
difference

E

cell

r

A

V

▲ Figure 10.4 Circuit for 
measuring e.m.f. and 
internal resistance

V
/V

0 I/A

E
gradient –r

▲ Figure 10.5 Graph of 
terminal p.d. against 
current
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irchhoff’s law
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10
The product VRI gives the power dissipated in the load, and the quotient VR/I gives the 
load resistance R.

Figure 10.7 shows the variation with load resistance R of the power VRI dissipated.  
The graph indicates that there is a maximum power delivered by the battery at one value 
of the external resistance. This value is equal to the internal resistance r of the battery.

0 r load resistance

po
w

er

▲ Figure 10.7 Graph of power delivered to external load against load resistance

A battery delivers maximum power to a circuit when the load resistance of the 
circuit is equal to the internal resistance of the battery.

WORKED EXAMPLE 10B

A high-resistance voltmeter reads 13.0 V when it is connected across the terminals of 
a battery. The voltmeter reading drops to 12.0 V when the battery delivers a current 
of 3.0 A to a lamp. State the e.m.f. of the battery. Calculate the potential difference 
across the internal resistance when the battery is connected to the lamp. Calculate 
the internal resistance of the battery.

Answer
The e.m.f. is 13.0 V, since this is the voltmeter reading when the battery is delivering 
negligible current.
Using Vr = E – VR, p.d. across the internal resistance = Vr = 13.0 – 12.0 = 1.0 V.

Using Vr = Ir, r = 1.0/3.0 = 0.33 Ω.

2 Three identical cells, each of e.m.f. 1.5 V, are connected in series to a 15 Ω lamp.  
The current in the circuit is 0.27 A. Calculate the internal resistance of each cell.

3 A cell of e.m.f. 1.5 V has an internal resistance of 0.50 Ω.

a Calculate the maximum current it can deliver. Under what circumstances does it 
deliver this maximum current?

b Calculate also the maximum power it can deliver to an external load. Under what 
circumstances does it deliver this maximum power?

10.2 Kirchhoff’s laws
Conservation of charge: Kirchhoff’s first law
A series circuit is one in which the components are connected one after another, 
forming one complete loop. You have probably connected an ammeter at different 

load

V

E

R

load

AI

VR

▲ Figure 10.6 Circuit for 
investigating power 
transfer to an external 
load

Questions
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WORKED EXAMPLE 10C

For the circuit of Figure 10.11, state the 
readings of the ammeters A1, A2 and A3.

Answer
A1 would read 175 mA, as the current 
entering the power supply must be the same 
as the current leaving it.

A2 would read 75 – 25 = 50 mA, as the total 
current entering a junction is the same as 
the total current leaving it.

A3 would read 175 – 75 = 100 mA.

0.175 A

25 mA

75 mA

A

A1

A3

A2

A

A

▲ Figure 10.11

I

I = I1  + I2  +  I3

I1

I2

I3

▲ Figure 10.10

points in a series circuit to show that it reads the same current at each point 
(see Figure 10.8).

A parallel circuit is one where the current can take alternative routes in different 
loops. In a parallel circuit, the current divides at a junction, but the current entering the 
junction is the same as the current leaving it (see Figure 10.9). The fact that the current 
does not get ‘used up’ at a junction is because current is the rate of flow of charge, 
and charges cannot accumulate or get ‘used up’ at a junction. The consequence of this 
conservation of electric charge is known as Kirchhoff’s first law. This law is usually 
stated as follows.

The sum of the currents entering a junction in a circuit is always equal to the sum 
of the currents leaving the junction.

At the junction shown in Figure 10.10,

I = I1 + I2 + I33 A 3 A

2 A

1A

A A

A

A

▲ Figure 10.9 The current 
divides in a parallel 
circuit.

4 The lamps in Figure 10.12 are identical. There is a current of 0.50 A through the 
battery. What is the current in each lamp?

5 Figure 10.13 shows one junction in a circuit. Calculate the ammeter reading.

1.5 A

2.5 A2 A

A

▲ Figure 10.12 ▲ Figure 10.13

Conservation of energy: Kirchhoff’s second law
When a battery supplies a current to a circuit the charge flowing round the circuit 
gains electrical energy on passing through the battery and loses electrical energy 
on passing through the rest of the circuit. From the law of conservation of energy, we 
know that the total energy must remain the same. The consequence of this conservation 
of energy is known as Kirchhoff’s second law. This law may be stated as follows.
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A 0.15 A

0.15 A

A

A

0.15 A

▲ Figure 10.8 The current 
at each point in a series 
circuit is the same.

Questions
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10.2 K
irchhoff’s law

s

10
The sum of the electromotive forces in a closed circuit is equal to the sum of the 
potential differences.

Figure 10.14 shows a circuit containing a battery, lamp and resistor in series.  
The battery has negligible internal resistance. Applying Kirchhoff ’s second law, the 
electromotive force in the circuit is the e.m.f. E of the battery. The sum of the potential 
differences is the p.d. V1 across the lamp plus the p.d. V2 across the resistor. Thus,  
E = V1 + V2. If the current in the circuit is I and the resistances of the lamp and resistor 
are R1 and R2 respectively, the p.d.s can be written as V1 = IR1 and V2 = IR2, so

E = IR1 + IR2

It should be remembered that both electromotive force and potential difference have 
direction. This must be considered when working out the equation for Kirchhoff’s 
second law. For example, in the circuit of Figure 10.15, two cells have been connected in 
opposition. Both cells have negligible internal resistance.

Here the total electromotive force in the circuit is E1 – E2, and by Kirchhoff’s second law

E1 – E2 = V1 + V2 = IR1 + IR2

In Figure 10.15 the direction of the current will depend on whether E1 > E2 or E1 < E2.  
If the normal direction of current through a cell is reversed, that cell is recharged rather 
than transferring energy to the charges that pass through it. The current through cell 1 
is in the normal direction and that through cell 2 is reversed. Hence cell 2 is being 
charged by cell 1.

In problems, the e.m.f. of a cell or battery is taken to be constant. In reality the e.m.f. 
decreases with use and the battery is recharged if it rechargeable.

E

I

R1

V1

R2

V2

E =  + V1 V2

▲ Figure 10.14

II

E1

R1

V1 V

E2

R2

2

cell 1 cell 2

▲ Figure 10.15

WORKED EXAMPLE 10D

For the circuit in Figure 10.15, cell 1 has e.m.f. 3.0 V and cell 2 e.m.f. 1.5 V.  
The resistance values of the resistors R1 and R2 are 2.0 Ω and 4.0 Ω respectively. 
Calculate the current in the circuit.

Answer
Using Kirchhoff’s second law: 3.0 – 1.5 = (I × 2) + (I  × 4) therefore, I = 1.5/6 = 0.25 A.

6 For the circuit in Figure 10.15 the e.m.f .of cell 1 is 6.0 V and cell 2 has an e.m.f. E2. 
The resistance values of the resistors R1 and R2 are 5.0 Ω and 3.0 Ω respectively.  
The current in the circuit is 0.50 A. Calculate the e.m.f. of cell 2.

Resistors in series
Figure 10.16 shows two resistors of resistances R1 and R2 connected in series, and a 
single resistor of resistance R equivalent to them. The current I in the resistors, and in 
their equivalent single resistor, is the same.

II

VV1

R1

V2

R2
equivalent

to

R

▲ Figure 10.16 Resistors in series

Question
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10 The total potential difference V across the two resistors must be the same as that across 
the single resistor. If V1 and V2 are the potential differences across each resistor,

V = V1 + V2

But since potential difference is given by multiplying the current by the resistance,

IR = IR1 + IR2

Dividing by the current I,

R = R1 + R2

This equation can be extended so that the equivalent resistance R of several resistors 
connected in series is given by the expression

R = R1 + R2 + R3 + …

The combined resistance of resistors in series is the sum of all the individual 
resistances.

Thus

Resistors in parallel
Now consider two resistors of resistance R1 and R2 connected in parallel, as shown in 
Figure 10.17. The current through each will be different, but they will each have the 
same potential difference. The equivalent single resistor of resistance R will have the 
same potential difference across it, but the current will be the total current through the 
separate resistors.

I
R

equivalent
to

V

V

I1 R1

R2

I2

I

▲ Figure 10.17 Resistors in parallel

By Kirchhoff’s first law,

I = I1 + I2

and using resistance = p.d./current, so I = V/R

V/R = V/R1 + V/R2

Dividing by the potential difference V,

1/R = 1/R1 + 1/R2

This equation can be extended so that the equivalent resistance R of several resistors 
connected in parallel is given by

R R R R

1
=

1
+

1
+

1
+ ...

1 2 3

10
 D

.C
. C

IR
C

U
IT

S

482807_10_CI_AS_Phy_SB_3e_177-195.indd   184 30/05/20   1:51 PM



185

10.3 Potential dividers

10
Thus

The reciprocal of the combined resistance of resistors in parallel is the sum of the 
reciprocals of all the individual resistances.

Note that:
1 For two identical resistors in parallel, the combined resistance is equal to half 

of the value of each one.
2 For resistors in parallel, the combined resistance is always less than the value 

of the smallest individual resistance.

WORKED EXAMPLE 10E

Calculate the equivalent resistance of the 
arrangement of resistors in Figure 10.18.

Answer
The arrangement is equivalent to two 6 Ω 
resistors in parallel, so the combined 
resistance R is given by 1/R = 1

6 + 1
6
 = 2

6. 
(Don’t forget to find the reciprocal of this 
value.)

Thus R = 3 Ω.

3 Ω 3 Ω

3 Ω 3 Ω

▲ Figure 10.18

7 Calculate the equivalent resistance of the arrangement of resistors in Figure 10.19. 
Hint: First find the resistance of the parallel combination.

8 Calculate the effective resistance between the points A and B in the network in 
Figure 10.20.

4 Ω

3 Ω

2 Ω

20 Ω

100 Ω 10 Ω

50 Ω

A

B
▲ Figure 10.19 ▲ Figure 10.20

10.3 Potential dividers
Two resistors connected in series with a cell each have a potential difference. They may 
be used to divide the e.m.f. of the cell. This is illustrated in Figure 10.21 on the next 
page.

The current in each resistor is the same, because they are in series. Thus V1 = IR1 and 
V2 = IR2. Dividing the first equation by the second gives V1/V2 = R1/R2. The ratio of 
the voltages across the two resistors is the same as the ratio of their resistances. If the 
potential difference across the combination were 12 V and R1 were equal to R2, then 
each resistor would have 6 V across it. If R1 were twice the magnitude of R2, then V1 
would be 8 V and V2 would be 4 V.

Questions
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V

I

R1 R2

V1 V2

▲ Figure 10.21 The potential divider

The use of potential dividers
If a component with a variable resistance is connected in series with a fixed resistor,  
and the combination is connected to a cell or battery to make a potential divider, then  
we have the situation of a potential divider that is variable between certain limits.  
The component of variable resistance could be, for example, a light-dependent resistor 
or a thermistor (see Topic 9.3). Changes in the light intensity or the temperature cause a 
change in the resistance of one component of the potential divider, so that the potential 
difference across this component changes. The change in the potential difference can be 
used to operate control circuitry if, for example, the light intensity becomes too low or 
too high, or the temperature falls outside certain limits.

The voltage can then be used to control an output device.

In Figure 10.22, a thermistor of varying resistance S is connected in series with a 
resistor of constant resistance R.

E

R

S V

▲ Figure 10.22 Potential divider circuit

The battery of e.m.f. E is assumed to have negligible internal resistance. The output 
voltage V across the thermistor is given by the expression

V = SE
(S + R)

 

The magnitude V of the potential difference (voltage) at any particular resistance value 
S of the thermistor is dependent on the relative values of S and R. Note that, as the 
resistance S of the thermistor increases, the output voltage V also increases.
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10.3 Potential dividers

10
By monitoring the potential difference (voltage) across the resistor of fixed resistance R, 
as shown in Figure 10.23, the output voltage will be given by

V = RE
(S + R)

 

E

R

S

V

▲ Figure 10.23 Alternative connections for a potential divider

The output voltage V will then decrease as the thermistor resistance S increases 
(temperature of the thermistor decreases).

If the thermistor in the circuits shown in Figures 10.22 and 10.23 is replaced with a 
light-dependent resistor (LDR) the output voltage will be controlled by the resistance  
of the LDR. Hence the output voltage depends on the light intensity on the LDR.  
For example, in the circuit shown in Figure 10.22 the output voltage will increase as  
the resistance of the LDR increases (light intensity decreases).

WORKED EXAMPLE 10F

A potential divider consists of a battery of e.m.f. 6.00 V and negligible internal 
resistance connected in series with a resistor of resistance 120 Ω and a variable 
resistor of resistance 0 → 200 Ω. Determine the range of potential difference that can 
be obtained across the fixed resistor.

Answer
When the variable resistor is at 0 Ω, the p.d. across the fixed resistor = 6.0 V.  
When the variable resistor is at 200 Ω,

p.d. across fixed resistor = 120/(120 + 200) × 6.00 = 2.25 V

The range is 2.25 V → 6.00 V.

9 A potential divider consists of a battery of e.m.f. 7.5 V and negligible internal 
resistance connected in series with a resistor of resistance R and a variable resistor 
of resistance 0 → 500 Ω. Deduce how the potential divider may be arranged so as to 
provide a potential difference that may be varied between 0 and 3.0 V.

Potentiometers
A potentiometer is a continuously variable potential divider. In Topic 9, a variable 
voltage supply was used to vary the voltage across different circuit components.  
A variable resistor, or rheostat, may be used to produce a continuously variable voltage.

Question
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Such a variable resistor is shown in Figure 10.24. The fixed ends AB are connected 
across the battery so that there is the full battery voltage across the whole resistor.  
As with the potential divider, the ratio of the voltages across AC and CB will be the same 
as the ratio of the resistances of AC and CB. When the sliding contact C is at the end 
B, the output voltage Vout will be 12 V. When the sliding contact is at end A, then the 
output voltage will be zero. So, as the sliding contact is moved from A to B, the output 
voltage varies continuously from zero up to the battery voltage. In terms of the terminal 
p.d. V of the cell, the output Vout of the potential divider is given by

Vout = 
VR1

(R1 + R2)

where R1 is the resistance of AC and R2 is the resistance of CB.

A variable resistor connected in this way is called a potentiometer. A type of 
potentiometer is shown in Figure 10.25. Note the three connections.

Using a potentiometer to compare potential differences or e.m.f.s of cells
A potentiometer can also be used as a means of comparing potential differences. The 
circuit of Figure 10.26 illustrates the principle. In this circuit the variable potentiometer 
resistor consists of a length of uniform resistance wire, stretched along a metre rule. 
Contact can be made to any point on this wire using a sliding contact. A centre-zero 
galvanometer is used to detect the current through cell A. A galvanometer is a sensitive 
current-measuring analogue meter. A galvanometer with a centre-zero scale shows 
negative currents when the needle is to the left-hand side of the zero mark and positive 
currents when it is to the right. In this circuit it is used as a null indicator; that is, to detect 
when the current through cell A is zero.

Suppose that the cell A has a known e.m.f. EA. This cell is switched into the circuit using 
the two-way switch. The sliding contact is then moved along the wire until the centre-
zero galvanometer reads zero. This position of the sliding contact on the wire is called the 
balance point. The current through cell A is zero and the p.d. across the length of wire 
lA is ‘balanced’ with the p.d. across cell A. Since the current through the cell is zero then 
the p.d. across the cell is equal to its e.m.f. The length lA of the wire from the common 
zero end to the sliding contact is noted. Cell B has an unknown e.m.f. EB. This cell is then 
switched into the circuit and the balancing process repeated. Suppose that the position 
at which the galvanometer reads zero is then a distance lB from the common zero to the 
sliding contact. The ratio of the e.m.f.s is the ratio of the balance lengths; that is,

EB/EA = lB/lA

and EB can be determined in terms of the known e.m.f. EA.

A

B

lA

EA

EB

two-way
switch

▲ Figure 10.26 Potentiometer used to compare cell e.m.f.s

▲ Figure 10.25 Internal 
and external views of a 
potentiometer

12 V

BA C

Vout

▲ Figure 10.24 
Potentiometer circuit
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10.3 Potential dividers

10

10 Figure 10.27 shows a variable resistor R connected in series with a 10 kΩ resistor and 
a 12 V supply. Calculate:

a the p.d. V across R when it has resistance 8.0 MΩ

b the p.d. V across R when it is has resistance 500 Ω

c the resistance of R which makes the p.d. V across R equal to 4.0 V.

11 The resistor R in the potential divider circuit of Figure 10.28 has a resistance which 
varies between 100 Ω and 6.0 kΩ. Calculate the potential difference V across R when 
its resistance is:

a 100 Ω

b 6.0 kΩ.

WORKED EXAMPLE 10G

1 A light-emitting diode (LED) is connected in series 
with a resistor to a 5.0 V supply.
a Calculate the resistance of the series resistor 

required to give a current in the LED of 12 mA, 
with a voltage across it of 2.0 V.

b Calculate the potential difference across the LED 
when the series resistor has resistance 500 Ω. 
Assume the resistance of the LED remains 
constant.

2 The e.m.f.s of two cells are compared using the slide-
wire circuit of Figure 10.26. Cell A has a known 
e.m.f. of 1.02 V; using this cell, a balance point is 
obtained when the slider is 37.6 cm from the zero 
of the scale. Using cell B, the balance point is at 
55.3 cm.
a Calculate the e.m.f. of cell B.
b State the advantage of using this null method to 

compare the e.m.f.s.

Answers
1 a If the supply voltage is 5.0 V and the p.d. across 

the LED is 2.0 V, the p.d. across the resistor must 
be 5.0 – 2.0 = 3.0 V. The current through the 
resistor is 12 mA as it is in series with the LED. 
Using R = V/I, the resistance of the resistor is 
3.0/12 × 10–3 = 250 Ω.

b The resistance of the LED is given by R = V/I = 
2.0/12 × 10–3 = 167 Ω. If this resistance is in series 
with a 500 Ω resistor and a 5.0 V supply, the p.d. 
across the LED is 5.0 × 167/(167 + 500) = 1.25 V.

2 a This is a straightforward application of the 
formula for the potentiometer, EB/EA = lB/lA. 
Substituting the values, EB = 1.50 V.

b When comparing the e.m.f.s of cells, it is 
necessary to arrange for the cells to be on open 
circuit so that there is no drop in terminal 
potential difference because of a current passing 
through the internal resistance. When the 
potentiometer is balanced, there is no current 
from the cell under test, which is exactly what is 
required.

12 V

R

V

10 kΩ

▲ Figure 10.27

9.0 V

R

V

1kΩ

▲ Figure 10.28

Questions
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SUMMARY

» The electromotive force (e.m.f.) of a power supply 
is equal to the energy transferred from other 
forms to electrical per unit charge in driving 
charge around a complete circuit.

» The potential difference (p.d.) across a component 
is equal to the energy transferred per unit of 
charge passing through the component. For a 
resistor the energy is transferred to thermal and 
light energies.

» The voltage across the terminals of a supply (the 
terminal p.d.) is always less than the e.m.f. of the 
supply when the supply is delivering a current, 
because of the p.d. across the internal resistance.

» For a supply of e.m.f. E which has internal 
resistance r, E = I(R + r) where R is the external 
circuit resistance and I is the current in the supply.

» A supply delivers maximum power to a load 
when the load resistance is equal to the internal 
resistance of the supply.

» At any junction in a circuit, the total current 
entering the junction is equal to the total current 
leaving it. This is Kirchhoff’s first law, and is a 
consequence of the law of conservation of charge.

» In any closed loop of a circuit, the sum of the 
electromotive forces is equal to the sum of 
the potential differences. This is Kirchhoff’s 

second law, and is a consequence of the law of 
conservation of energy.

» The equivalent resistance R of resistors connected 
in series is given by:  
R = R1 + R2 + R3 + . . .

» The equivalent resistance R of resistors connected 
in parallel is given by:  
1/R = 1/R1 + 1/R2 + 1/R3 + . . .

» Two resistors in series act as a potential divider, 
where V1/V2 = R1/R2. If V is the supply voltage  
and Vout is the voltage across R1 then:  
Vout = VR1/(R1 + R2).

» A potentiometer is a variable resistor connected as 
a potential divider to give a continuously variable 
output voltage.

» Thermistors and light dependent resistors may 
be used in potential divider circuits to provide a 
p.d. that is dependent on temperature and light 
intensity respectively.

» A potentiometer may be used to compare e.m.f.s  
of cells or potential differences.

» When using a potentiometer to compare e.m.f.s 
of cells or potential differences, a galvanometer 
with a centre-zero scale is used to detect when the 
current through the cell is zero.

END OF TOPIC QUESTIONS

1 Fig 10.29 shows a battery with an internal resistance r connected to a fixed 
resistor R and a variable resistor. The resistance of the variable resistor is 
increased. Which of the following statements is correct?
A The potential difference across the battery decreases.
B The current through the battery increases.
C The potential difference across the battery increases.
D The potential difference across r increases.

2 Fig. 10.30 shows a cell connected to three resistors of resistance, 4 Ω, 6 Ω and 8 Ω, 
in parallel. Which statement is correct?
A The current through the 8 Ω resistor is greater than the current through the  

4 Ω resistor.
B The potential difference (p.d.) across the 8 Ω resistor is greater than the p.d. 

across the 4 Ω resistor.
C The power transferred in each resistor is greatest in the 4 Ω resistor.
D The total resistance in the circuit is greater than 8 Ω.

3 Fig 10.31 shows a potentiometer circuit used to compare electromotive force 
(e.m.f.). The galvanometer reads zero when the connection is at point P on the  
wire ST. The resistance of the rheostat is increased. Which statement is correct?
A The potential difference (p.d.) across ST increases.
B The current in ST increases.
C The balance point is now closer to S.
D The balance point is closer to T.
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r

8 Ω

4 Ω

6 Ω

▲  Figure 10.29

▲  Figure 10.30

▲  Figure 10.31

S P T
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4 The internal resistance of a dry cell increases gradually with age, even if the cell 

is not being used. However, the e.m.f. remains approximately constant. You can 
check the age of a cell by connecting a low-resistance ammeter across the cell 
and measuring the current. For a new 1.5 V cell of a certain type, the short-circuit 
current should be about 30 A.
a Calculate the internal resistance of a new cell.
b A student carries out this test on an older cell, and finds the short-circuit 

current to be only 5 A. Calculate the internal resistance of this cell.

5 A torch bulb has a power supply of two 1.5 V cells connected in series. 
The potential difference across the bulb is 2.2 V, and it dissipates energy at  
the rate of 550 mW. Calculate:
a the current through the bulb,
b the internal resistance of each cell,
c the heat energy dissipated in each cell in 2 minutes.

6 Two identical light bulbs are connected first in series, and then in parallel, across 
the same battery (assumed to have negligible internal resistance). Use Kirchhoff’s 
laws to decide which of these connections will give the greater total light output.

7 You are given three resistors of resistance 22Ω, 47 Ω and 100 Ω. Calculate:
a the maximum possible resistance,
b the minimum possible resistance,
that can be obtained by combining any or all of these resistors.

8 In the circuit of Fig. 10.32, the currents I1 and I2 are equal. Calculate:
a the resistance R of the unknown resistor,
b the total current I3.

10 Ω

15 V

R5 Ω

I3

I1

I2

▲  Figure 10.32

9 Fig. 10.33 shows a potential divider circuit, designed to provide p.d.s of 1.0 V and 
4.0 V from a battery of e.m.f. 9.0 V and negligible internal resistance.

15 Ω

5.0 Ω

9.0 V

R A

B

C

4.0 V

1.0 V

0 V

▲  Figure 10.33

End of topic questions
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a Calculate the value of resistance R.
b State and explain what happens to the voltage at terminal A when an additional 

1.0 Ω resistor is connected between terminals B and C in parallel with the 5.0 Ω 
resistor. No calculations are required.

10 A student designs an electrical method to monitor the position of a steel sphere 
rolling on two parallel rails. Each rail is made from bare wire of length 30 cm and 
resistance 20 Ω. The position-sensing circuit is shown in Fig. 10.34. The resistance 
of the steel sphere and the internal resistance of the battery are negligible.

resistance wire

steel
sphere

A

l
4.5 V

V10 ΩB

▲ Figure 10.34
a State the voltage across the 10 Ω resistor when the sphere is at A, where l = 0.
b With the sphere at end B of the rails, calculate:

i the total resistance of the circuit,
ii the current in the 10 Ω resistor,
iii the output voltage V.

11 Two equations for the power P dissipated in a resistor are P = I 2R and P = V 2/R. 
The first suggests that the greater the resistance R of the resistor, the more power 
is dissipated. The second suggests the opposite: the greater the resistance, the 
less the power. Explain this inconsistency.

12 State the minimum number of resistors, each of the same resistance and power 
rating of 0.5 W, which must be used to produce an equivalent 1.2 k Ω, 5 W resistor. 
Calculate the resistance of each, and state how they should be connected.

13 In the circuit shown in Fig. 10.35 the current in the battery is 1.5 A. The battery has 
internal resistance 1.0 Ω. Calculate:
a the combined resistance of the resistors that are connected in parallel in the 

circuit of Fig. 10.35,
b the total resistance of the circuit,
c the resistance of resistor Y,
d the current through the 6 Ω resistor.

12 V
internal resistance 1.0 Ω

Y

12 Ω

6 Ω

▲ Figure 10.35

14 The current in the starter motor of a car is 160 A when starting the engine.  
The connecting cable has total length 1.3 m, and consists of 15 strands of wire, 
each of diameter 1.2 mm. The resistivity of the metal of the strands is 1.4 × 10–8 Ω m.
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a Calculate:

i the resistance of each strand,
ii the total resistance of the cable,
iii the power loss in the cable.

b When the starter motor is used to start the car, 700 C of charge pass through a 
given cross-section of the cable.
i Assuming that the current is constant at 160 A, calculate for how long the 

charge flows.
ii Calculate the number of electrons which pass a given cross-section of the 

cable in this time. The electron charge e is –1.6 × 10–19 C.
c The e.m.f. of the battery is 13.6 V and its internal resistance is 0.012 Ω. Calculate:

i the potential difference across the battery terminals when the current in the 
battery is 160 A,

ii the rate of production of heat energy in the battery.

15 A copper wire of length 16 m has a resistance of 0.85 Ω. The wire is connected 
across the terminals of a battery of e.m.f. 1.5 V and internal resistance 0.40 Ω.
a Calculate the potential difference across the wire and the power dissipated in it.
b In an experiment, the length of this wire connected across the terminals of the 

battery is gradually reduced.
i Sketch a graph to show how the power dissipated in the wire varies with the 

connected length.
ii Calculate the length of the wire when the power dissipated in the wire is a 

maximum.
iii Calculate the maximum power dissipated in the wire.

16 a i State Kirchhoff’s second law. [1]
ii Kirchhoff’s second law is linked to the conservation of a certain quantity. 

State this quantity. [1]
b The circuit shown in Fig. 10.36 is used to compare potential differences.

D

R

Y

uniform resistance wire
length 1.00 m

cell B

0.90 m

E r

X

C

I

J

0.50 Ω
2.0 V

cell A

▲ Figure 10.36

 The uniform resistance wire XY has length 1.00 m and resistance 4.0 Ω. Cell A 
has e.m.f. 2.0 V and internal resistance 0.50 Ω. The current through cell A is I. 
Cell B has e.m.f. E and internal resistance r.

 The current through cell B is made zero when the movable connection J is adjusted 
so that the length of XJ is 0.90 m. The variable resistor R has resistance 2.5 Ω.
i Apply Kirchhoff’s second law to the circuit CXYDC to determine the 

current I. [2]
ii Calculate the potential difference across the length of wire XJ. [2]
iii Use your answer in ii to state the value of E. [1]
iv State why the value of the internal resistance of cell B is not required for  

the determination of E. [1]

Cambridge International AS and A Level Physics (9702) Paper 21 Q5 May/June 2012

End of topic questions
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17 A circuit used to measure the power transfer from a battery is shown in Fig. 10.37. 

The power is transferred to a variable resistor of resistance R.

• •

V

A

E

I

r

R

▲ Figure 10.37

 The battery has an electromotive force (e.m.f.) E and an internal resistance r. 
There is a potential difference (p.d.) V across R. The current in the circuit is I.
a By reference to the circuit shown in Fig. 10.37, distinguish between the 

definitions of e.m.f. and p.d. [3]
b Using Kirchoff’s second law, determine an expression for the current I  

in the circuit. [1]
c The variation with current I of the p.d. V across R is shown in Fig. 10.38.

0

V
 / 

V

I / A

2

4

6

1 2 3 4

▲ Figure 10.38

 Use Fig. 10.38 to determine:
i the e.m.f. E, [1]
ii the internal resistance r. [2]

d i Using the data from Fig. 10.38, calculate the power transferred to  
R for a current of 1.6 A. [2]

ii Use your answers from c i and d i to calculate the efficiency of the  
battery for a current of 1.6 A. [2]

Cambridge International AS and A Level Physics (9702) Paper 23 Q4 Oct/Nov 2012

18 a State Kirchoff’s second law. [2]
b Two batteries, each of electromotive force (e.m.f.) 6.0 V and negligible  

internal resistance, are connected in series with three resistors, as  
shown in Fig. 10.39. Resistor X has resistance 4.0 Ω and resistor Y has 
resistance 1.5 Ω.
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6.0 V

6.0 V

1.5 ΩY

4.0 Ω
R

V

I

X

▲ Figure 10.39

i The resistance R of the variable resistor is changed until the voltmeter  
in the circuit reads zero.

 Calculate:
1 the current I in the circuit, [1]
2 the resistance R. [2]

ii Resistors X and Y are wires made from the same material. The diameter of 
the wire of X is twice the diameter of the wire of Y.

 Determine the ratio:
average drift speed of free electrons in X
average drift speed of free electrons in Y  [2]

iii The resistance R of the variable resistor is now increased. State and explain 
the effect of the increase in R on the power transformed by each of the 
batteries. [3]

Cambridge International AS and A Level Physics (9702)  
Paper 22 Q5 parts a, bi, bii, biii March 2018

19 a Using energy transformations, describe the electromotive force (e.m.f.) of a 
battery and the potential difference (p.d.) across a resistor. [2]

b A battery of e.m.f. 6.0 V and negligible internal resistance is connected to a 
network of resistors and a voltmeter, as shown in Fig 10.40. Resistor Y has a 
resistance of 24 Ω and resistor Z has a resistance of 32 Ω.

V

6.0 V

Z
32 Ω

Y
24 ΩX

▲ Figure 10.40

i The resistance RX of the variable resistor X is adjusted until the voltmeter 
reads 4.8 V. Calculate:
1 the current in resistor Z, [1]
2 the total power provided by the battery, [2]
3 the number of conduction electrons that move through the battery  

in a time interval of 25 s, [2]
4 the total resistance of X and Y connected in parallel, [2]
5 the resistance RX. [2]

ii The resistance RX is now decreased. State and explain the change, 
if any, to the reading on the voltmeter. [2]

Cambridge International AS and A Level Physics (9702) Paper 22 Q6 March 2019

End of topic questions
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Learning outcomes
By the end of this topic, you will be able to:
11.1 Atoms, nuclei and radiation

1  infer from the results of the a-particle 
scattering experiment the existence and 
small size of the nucleus

2  describe a simple model for the nuclear 
atom to include protons, neutrons and orbital 
electrons

3  distinguish between nucleon number and 
proton number

4  understand that isotopes are forms of the 
same element with different number of 
neutrons in their nuclei

5  understand and use the notation 
A
XZ  for the 

representation of nuclides
6  understand that nucleon number and charge 

are conserved in nuclear processes
7  describe the composition, mass and charge 

of a -, β- and γ - radiations. Both b− (electrons) 
and β+ (positrons) are included

8  understand that an antiparticle has the 
same mass but opposite charge to the 
corresponding particle and that a positron is 
the antiparticle of an electron

9  state that (electron) antineutrinos are 
produced during b− decay and (electron) 
neutrinos are produced during b+ decay

10  understand that α-particles have discrete 
energies but that b-particles have a  

   continuous range of energies because (anti)     
   neutrinos are emitted in b-decay

11  represent α- and β-decay by a radioactive 
decay equation of the form 

 238
U 92  → 234 

Th 90   + 4 
2α

12  use the unified atomic mass unit (u) as a 
unit of mass

11.2 Fundamental particles
1  understand that a quark is a fundamental 

particle and that there are six flavours 
(types) of quark: up, down, strange, charm, 
top and bottom

2  recall and use the charge of each flavour of 
quark and understand that its respective 
antiquark has the opposite charge (no 
knowledge of any other properties of 
quarks is required)

3  recall that protons and neutrons are not 
fundamental particles and describe protons 
and neutrons in terms of their quark 
composition

4  understand that a hadron may be either 
a baryon (consisting of three quarks) or a 
meson (consisting of one quark and one 
antiquark)

5  describe the changes to quark composition 
that take place during β− and β+ decay

6  recall that electrons and neutrinos are 
fundamental particles called leptons

Starting points
★ The atom consists of a very small nucleus containing protons and neutrons, 

surrounded by orbiting electrons.
★ The decay of unstable nuclei leads to radioactive emissions.
★ Protons and neutrons are not fundamental particles.

11.1	 Atoms,	nuclei	and	radiation

The atoms of all elements are made up of three particles called protons, neutrons 
and electrons. The protons and neutrons are at the centre or nucleus of the atom. 
The electrons travel around (orbit) the nucleus.

	 11	 Particle	physics
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11.1 
Atom

s, nuclei and radiation

11
We shall see later in this Topic that the diameter of the nucleus is only about 1/10 000 of 
the diameter of an atom. We shall also discover how the evidence for the existence and 
small size of the nucleus was obtained.

Figure 11.1 illustrates very simple models (not to scale) of a helium atom and a lithium 
atom.

The mass of atoms and their constituent particles is more conveniently expressed in 
atomic mass units (u) than the SI unit of mass the kilogram. (1 u = 1.66 × 10−27 kg). 

Protons and neutrons both have a mass of about one atomic mass unit u. By comparison, 
the mass of an electron is very small, about 1/2000 of 1 u. The vast majority of the mass of 
the atom is, therefore, in the nucleus.

The basic properties of the proton, neutron and electron are summarised in Table 11.1.

electrons carry a negative
charge of –1e where
e = 1.6 × 10–19 C

protons carry a positive
charge of +1e

neutrons carry no charge

b)neutrons and
protons form
the nucleus of
an atom

electrons orbit
the nucleus

a)

▲ Figure 11.1 Structures of a) a helium atom and b) a lithium atom

mass/u charge position

proton 1.0073 +e in nucleus

neutron 1.0087 0 in nucleus

electron 0.00055 −e orbiting nucleus

e = 1.60 × 10−19 C

▲ Table 11.1

Atoms and ions
Atoms are uncharged (neutral) because they contain equal numbers of protons and 
electrons and the charge on an electron is equal and opposite to the charge on a proton. 
If an atom loses one or more electrons, so that it does not contain an equal number of 
protons and electrons, it becomes charged and is called an ion.

For example, if a sodium atom loses one of its electrons, it becomes a positive sodium ion.

    Na   →   Na+  +   e−

sodium atom sodium ion electron

If an atom gains an electron, it becomes a negative ion.

Proton number and nucleon number

The number of protons in the nucleus of an atom is called the proton number  
(or atomic number) Z.

The number of protons together with the number of neutrons in the nucleus is 
called the nucleon number (or mass number) A.

A nucleon is the name given to either a proton or a neutron in the nucleus.
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The difference between the nucleon number (A) and the proton number (Z) gives the 
number of neutrons in the nucleus.

Representation of nuclides
If the chemical symbol of an element is X, a particular atom of this element, a nuclide,  
is represented by the notation

nucleon number
X proton number  =  AXZ

The element changes for every Z number (proton number) and the symbol X changes. 
A nuclide is the name given to a class of atoms whose nuclei contain a specified number 
of protons and a specified number of neutrons. The nucleus of one form of sodium 
contains 11 protons and 12 neutrons. Therefore, its proton number Z is 11 and the 
nucleon number A is 11 + 12 = 23. This nuclide can be shown as 23Na11

. All atoms with 
nuclei that contain 11 protons and 12 neutrons belong to this class and are the same 
nuclide.

WORKED EXAMPLE 11A

An oxygen nucleus is represented by 16O  8 . Describe its atomic structure.

Answer
The nucleus has a proton number of 8 and a nucleon number of 16. Thus, its nucleus 
contains 8 protons and 16 − 8 = 8 neutrons. There are also 8 electrons (equal to 
the number of protons) orbiting the nucleus.

1 Write down the proton number and the nucleon number for the potassium nucleus 
40K19

. Deduce the number of neutrons in the nucleus.

Isotopes
Sometimes atoms of the same element have different numbers of neutrons in their 
nuclei. If two different nuclides have nuclei with the same atomic number Z but a 
different mass number A they are called isotopes of the same element.

The most abundant form of chlorine contains 17 protons and 18 neutrons in its 
nucleus, giving it a nucleon number of A = 17 + 18 = 35. This form of chlorine is often 
called chlorine-35. Another form of chlorine contains 17 protons and 20 neutrons in 
the nucleus, giving it a nucleon number of 37. This is chlorine-37. Chlorine-35 and 
chlorine-37 are said to be isotopes of chlorine.

Isotopes are different forms of the same element which have the same number of 
protons but different numbers of neutrons in their nuclei.

Some elements have many isotopes, but others have very few. For hydrogen, the most 
common isotope is hydrogen-1. Its nucleus is a single proton. Hydrogen-2 is called 
deuterium; its nucleus contains one proton and one neutron. Hydrogen-3, with one 
proton and two neutrons, is called tritium.

Note that the term isotope is used to describe nuclei with the same proton number (that 
is, nuclei of the same element) but with different nucleon numbers.

Note that the term nuclide is used to describe a particular class of nuclei:

A nuclide is a class of nuclei that have a particular nucleon number and a 
particular proton number.

Question
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Background radiation
Radioactivity is a natural phenomenon. Rocks such as granite contain small amounts 
of radioactive nuclides, some foods we eat emit radiation, and even our bodies are 
naturally radioactive. Although the atmosphere provides life on Earth with some 
shielding, there is, nevertheless, some radiation from outer space (cosmic radiation). 
In addition to this natural radioactivity, we are exposed to radiation from human-
made sources. These are found in medicine, in fallout from nuclear explosions, 
and in leaks from nuclear power stations. The sum of all this radiation is known as 
background radiation. Figure 11.2 indicates the relative proportions of background 
radiation coming from various sources.

51%

14%
10%

1%

12%

12%medical sources
such as X-rays

internal sources from the
food we eat, liquids we drink
and from the air we breathe

cosmic rays from outer space

gamma rays from
rocks and soil

radon and its daughter products are released into the air following
the decay of naturally occuring uranium isotopes found in granite

less than 1% from leaks and fallout

▲ Figure 11.2 Sources of background radiation

α-particles, β-particles and γ-radiation
Some elements have nuclei which are unstable. That is, the combination of protons 
and neutrons in the nucleus is such that the forces acting on the nucleons do not 
balance. In order to become more stable, they emit particles and/or electromagnetic 
radiation. The nuclei are said to be radioactive, and the emission is called radioactivity. 
The emissions are invisible to the eye, but their tracks were first made visible in a device 
called a cloud chamber. The photograph in Figure 11.3 shows tracks created by one type of 
emission, α-particles.

Investigations of the nature and properties of the emitted particles or radiation show that 
there are three different types of emission. The three types are α-particles (alpha-particles), 
β-particles (beta-particles) and γ-radiation (gamma radiation). All three emissions 
originate from the nucleus.

α-particles
An α-particle consists of two protons and two neutrons and hence has a charge of +2e. 
Therefore, an α-particle is like a helium nucleus. α-particles are emitted from a heavy 
nucleus (for example, nuclides with an atomic number between bismuth 83 and uranium 
92) with high speeds of up to about 107 m s−1 (about 5% of the speed of light). α-particle 
emission is the least penetrating of the three types of emission. It can pass through very 
thin paper, but is unable to penetrate thin card. Its range in air is a few centimetres.

An α-particle is identical to the nucleus of a helium atom.

In terms of symbols:

An α-particle is written as 4
2
He.

As α-particles travel through matter, they interact with nearby atoms, causing them to 
lose one or more electrons. The ionised atom and the dislodged electron are called an 
ion pair. The production of an ion pair requires the separation of unlike charges, and 

▲ Figure 11.3 Tracks 
of α-particles from a 
radioactive source
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this process requires energy. α-particles have a relatively large mass and charge, and 
consequently they are efficient ionisers. They may produce as many as 105 ion pairs 
for every centimetre of air through which they travel. Thus, they lose energy relatively 
quickly, and have low penetrating power.

When the nucleus of an atom emits an α-particle, it is said to undergo α-decay. 
The nucleus loses two protons and two neutrons in this emission.

In α-decay, the proton number of the nucleus decreases by two, and the nucleon 
number decreases by four.

Each element has a particular proton number and, therefore, α-decay causes one 
element to change into another. (This process is sometimes called transmutation.) The 
original nuclide is called the parent nuclide, and the new one the daughter nuclide.

For example, uranium-234 (the parent nuclide) may emit an α-particle. The daughter 
nuclide is thorium-230. In addition, energy is released, which shows up as the kinetic 
energy of the alpha particle and the daughter nuclide. This emission is represented by 
the nuclear equation

234
92

UÆ 230
90 

Th + 4
2
He + energy

Note that in all radioactive decay processes (and, in fact, in all processes of nuclear 
reactions) nucleon number and proton number (and hence charge) are conserved (stay the 
same). Hence, for all equations representing nuclear reactions, the sum of the numbers 
at the top of the symbols on the left-hand side of the equation (the sum of the nucleon 
numbers) is equal to the sum of the nucleon numbers on the right-hand side. Similarly, 
the sum of the numbers at the bottom of the symbols on the left-hand side (the sum of 
the proton numbers) is equal to the sum of the proton numbers on the right-hand side.

In the equation above:

» The number of protons in the parent nuclide (Z = 92) is equal to the sum of the 
number of protons in the daughter nuclide (Z = 90) plus the number of protons in 
the alpha particle (Z = 2), so charge is conserved.

» The number of nucleons in the parent nuclide (A = 234) is equal to the sum of the 
number of nucleons in the daughter nuclide (A = 230) plus the number of nucleons 
in the alpha particle (A = 4).

Energy and mass, taken together, are also conserved in all nuclear processes, as is 
momentum.

β-particles
A radioactive nucleus that decays by β decay may emit a negative (β−) or positive (β+) 
electron. The positive electron (β+) is also known as a positron or an antielectron. 
The positron is the antiparticle of an electron and, therefore, has the same mass but 
opposite charge to an electron.

β-particles are fast moving electrons, β−, or positrons, β+.

β-particles have a range of speeds that may reach in excess of 99% of the speed of 
light. These particles have half the charge and very much less mass than α-particles. 
Consequently, they are much less efficient than α-particles in producing ion pairs 
as they pass through matter. They are, thus, far more penetrating than α-particles, 
being able to travel up to about a metre in air. They can penetrate card and sheets of 
aluminium up to a few millimetres thick.
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A β− particle may be emitted from a lead-214 nucleus (the parent nuclide).  
The daughter nuclide is bismuth-214 and, in addition, energy is released.  
The β− emission is represented by the nuclear equation

214
82

PbÆ 214
83

Bi +  0
–1

e + 0
0

–
v + energy

A β+ particle may be emitted from a phosphorus-30 nucleus (the parent nuclide). 
The daughter nuclide is silicon-30 and energy is also released. The β+ emission is 
represented by the nuclear equation:

30
15

PÆ 30
14

Si + 0
1
e + 0

0
v + energy

In the nuclear equations above, the symbols  0–1
e and 0

1
e represent an electron and 

positron respectively. β+ emission is also known as positron emission, We will look 
at this in more detail in the A Level Topic 24.3 in the context of positron emission 
tomography (PET scanning).

The symbols 0
0
v and 0

0
v
– 

represent a neutrino and an antineutrino respectively. 
The antineutrino is the antimatter equivalent of the neutrino. Neutrinos have no 
electrical charge and little or no mass and are emitted from the nucleus at the same 
time as the β-particle (the electron or the positron).

Since the neutrino and antineutrino have no charge we can show that in both types of 
β decay, charge is conserved and the total number of nucleons is conserved.

The changes that take place in the nucleus
It was stated earlier that the nucleus contains protons and neutrons. What, then, is the 
origin of β− particle emission? Each β-particle certainly comes from a nucleus, not from 
the electrons outside the nucleus. The process for this type of decay is that, just prior 
to β− emission, a neutron in the nucleus transforms into a proton, a negative electron 
and an antineutrino. We shall learn more about how this change happens in Topic 11.2. 
The ratio of protons to neutrons in the nucleus is changed and this makes the daughter 
nucleus more stable.

In fact, free neutrons (not inside the nucleus) are also known to decay the same way:
1
0
nÆ 1

1
p +  0

–1
e + 0

0
v
–
 + energy

A similar process happens in the nucleus. In β− decay, a negative electron and 
antineutrino v– are emitted from the nucleus. This leaves the nucleus with the same 
number of nucleons as before, but with one extra proton and one fewer neutron.

In β+ emission, a proton in the nucleus forms a neutron, a positive electron and a 
neutrino. This process again changes the ratio of protons to neutrons in the nucleus and 
makes the daughter nucleus more stable.

In β+ decay the proton is considered to transform itself as follows:
1
1
p Æ 1

0
n + 0

1
e + 0

0
v + energy

In β+ decay, the positive electron and a neutrino are emitted from the nucleus. 
This leaves the nucleus with the same number of nucleons as before, but with one 
extra neutron and one fewer proton.

In β− decay (negative electron emitted), a daughter nuclide is formed with the 
proton number increased by one, but with the same nucleon number.

In β+ decay (positive electron emitted), a daughter nuclide is formed with the 
proton number decreased by one, but with the same nucleon number.

The antimatter particle, the positron (positive electron), very quickly meets its equivalent 
matter particle, the negative electron. The two particles annihilate each other to produce 
γ-radiation. This makes the positive electron difficult to detect.
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WORKED EXAMPLE 11B

A strontium-90 atom (the parent nuclide) may decay with the emission of a β-particle 
to form the daughter nuclide yttrium-90. The decay is represented by the nuclear 
equation

90
38

Sr → 90
39 

Y + β + x + energy

State and explain whether the β-particle is a negative or positive electron. State the 
type of particle represented by x.

Answer
The proton number has increased by one, hence a negative electron is emitted. 
The x is an antineutrino as this particle is emitted with a negative electron.

2 Write down a nuclear equation to represent the α decay of a thorium nucleus (232
90

Th) 
to a radium nucleus (Ra).

3 Write down a nuclear equation to represent the β− decay of a radium nucleus (228
88

Ra) 
to a actinium nucleus (Ac).

Kinetic energy of emitted alpha and beta particles
The same amount of energy is released in the decay of each nucleus and depends on 
the parent nuclide and the type of decay. For example, the same amount of energy is 
released in the decay by α-emission of each nucleus of 234

92
U.

The α-particles emitted from a particular radioactive nuclide all have the same kinetic 
energy. The β-particles from a particular nuclide, by contrast, have a continuous range 
of energies, from zero to the maximum energy available.

Neutrinos or antineutrinos are emitted from the nucleus at the same time as the β-particle 
(the electron or the positron) in β-decay. Thus the energy released in β-decay is shared 
between the kinetic energy of the β-particle and the recoiling daughter nucleus and the 
energy of the neutrino or antineutrino. The same amount of energy is released in the decay 
of each particular parent nucleus. However, the β-particles (electrons or positrons) emitted 
from a particular radioactive nuclide have varying amounts of kinetic energy. The amount 
depends on the way the total energy available is shared between the β-particle and the 
neutrino or antineutrino. The sum of the positron’s energy and the neutrino’s energy is 
constant for the decay of a particular nuclide. The sum of the electron’s energy and the 
antineutrino’s energy is constant for the decay of a particular nuclide.

The α-particles emitted from a particular radioactive nuclide all have the same 
kinetic energy.

The β-particles emitted from a particular radioactive nuclide have a continuous 
range of kinetic energies because neutrinos or antineutrinos are emitted in β-decay.

Questions

WORKED EXAMPLE 11C

A stationary polonium nucleus ( 212
84

Po) of mass 212 u 
spontaneously emits an α-particle. The α-particle is 
emitted with an energy of 1.4 × 10–12 J and the reaction 
gives rise to a nucleus of lead (Pb).
a Write down a nuclear equation to represent the  

α decay of the polonium nucleus.
b Calculate the speed of the α-particle.

Answers
a (212

84
Po) → (208

82
Pb) + 4

2
He + energy

b 1/2mv2 = energy of α-particle
 v = [(2 × 1.4 × 10–12)/(4 × 1.66 × 10−27)]1/2  

    = 2.1 × 107 m s−1
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γ-radiation

γ-radiation is part of the electromagnetic spectrum with wavelengths between 
10−11 m and 10−13 m.

Since γ-radiation has no charge, its ionising power is much less than that of either α- or 
β-particles. γ-radiation penetrates almost unlimited thicknesses of air, several metres of 
concrete or several centimetres of lead.

α- and β-particles are emitted by unstable nuclei which have excess energy. 
The emission of these particles results in changes in the ratio of protons to neutrons, 
but the daughter nuclei may still have excess energy. The nucleus may return to its 
unexcited (or ground) state by emitting energy in the form of γ-radiation.

In γ-emission, no particles are emitted and there is, therefore, no change to the 
proton number or nucleon number of the parent nuclide.

For example, when uranium-238 decays by emitting an α-particle, the resulting nucleus 
of thorium-234 contains excess energy (it is in an excited state) and emits a photon of 
γ-radiation to return to the ground state. This process is represented by the nuclear equation

234
90 

Th* Æ 234
90 

Th + γ

The* next to the symbol Th on the left-hand side of the equation shows that the thorium 
nucleus is in an excited state.

Summary of the composition of radioactive emissions
Table 11.2 summarises the composition, mass and charge of α-particles, β-particles and 
γ-radiation.

property α-particle
β-minus 
particle β-plus particle γ-radiation

mass 4u about u/2000 about u/2000 0

charge +2e −e +e 0

nature helium nucleus 
(2 protons + 2 
neutrons)

electron positron short-wavelength 
electromagnetic 
waves

speed up to 0.05c up to 0.99c up to 0.99c c

affects 
photographic film?

yes yes yes yes

▲	 Table 11.2

Radioactive decay series
The daughter nuclide of a radioactive decay may, itself, be unstable and so may emit 
radiation to give another different nuclide. This sequence of radioactive decay from 
parent nuclide through succeeding daughter nuclides is called a radioactive decay 
series. The series ends when a stable nuclide is reached.

Questions 4 The kinetic energy of a β-particle is 3.2 × 10–16 J. Calculate the speed of this 
β-particle.

5 Use the conservation of momentum to calculate the speed of the lead nucleus in 
Worked Example 11C.

482807_11_CI_AS_Phy_SB_3e_196-215.indd   203 30/06/20   3:14 PM



204

11
 P

a
r

ti
c

le
 P

h
ys

ic
s

11

EXTENSION

Detecting radioactivity
Some of the methods used to detect radioactive emissions are based on the ionising 
properties of the particles or radiation.

The Geiger counter
Figure 11.4 illustrates a Geiger-Müller tube with a scaler connected to it. When 
radiation enters the window, it creates ion pairs in the gas in the tube. These 
charged particles, and particularly the electrons, are accelerated by the potential 
difference between the central wire anode and the cylindrical cathode. These 
accelerated particles then cause further ionisation. The result of this continuous 
process is described as an avalanche effect. That is, the entry of one particle 
into the tube and the production of one ion pair results in very large numbers of 
electrons and ions arriving at the anode and cathode respectively. This gives a 
pulse of charge which is amplified and counted by the scaler or ratemeter. (A scaler 
measures the total count of pulses in the tube during the time that the scaler is 
operating. A ratemeter continuously monitors the number of counts per second.) 
Once the pulse has been registered, the charges are removed from the gas in 
readiness for further radiation entering the tube.

scaler or
ratemeter

thin mica
window

positive
wire anode

negative cylindrical
cathode

argon gas at
low pressure

▲ Figure 11.4 Geiger-Müller tube and scaler

Photographic plates
When a radioactive emission strikes a photographic film, the film reacts as if it had 
been exposed to a small amount of visible light. When the film is developed, fogging 
or blackening is seen. This fogging can be used to detect, not only the presence of 
radioactivity, but also the dose of the radiation.

Part of such a radioactive decay series, the uranium series, is shown in Table 11.3.

decay radiation emitted
238

92 
U Æ 234

90 
Th + 4

2 
He + γ α, γ

234
90 

Th Æ 234
91 

Pa + 0
–1 

e + γ β−, γ
234

91 
Pa Æ 234

92 
U + 0–1 

e + γ β−, γ
234

92 
U Æ 230

90 
Th + 4

2 
He + γ α, γ

230
90 

Th Æ 226
88 

Ra + 4
2 
He + γ α, γ

226
88 

Ra Æ 222
86 

Rn + 4
2 
He α

222
86 

Rn Æ 218
84 

Po + 4
2 
He α

▲ Table 11.3 Part of the decay series of uranium-238
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Figure 11.5 shows a film badge dosimeter. It contains a piece of photographic film 
which becomes fogged when exposed to radiation. Workers who are at risk from 
radiation wear such badges to gauge the type and dose of radiation to which they 
have been exposed. The radiation passes through different filters before reaching the 
film. Consequently, the type of radiation, as well as the quantity, can be assessed.

▲ Figure 11.5 Film badge dosimeter

The scintillation counter
Early workers with radioactive materials used glass screens coated with zinc sulfide 
to detect radiation. When radiation is incident on the zinc sulfide, it emits a tiny pulse 
of light called a scintillation. The rate at which these pulses are emitted indicates the 
intensity of the radiation.

The early researchers worked in darkened rooms, observing the zinc sulfide screen 
by eye through a microscope and counting the number of flashes of light occurring 
in a certain time. Now a scintillation counter is used (see Figure 11.6).

Often a scintillator crystal is used instead of a zinc sulfide screen. The crystal is 
mounted close to a device known as a photomultiplier, a vacuum-tube device which 
uses the principle of photoelectric emission (see Topic 22). Flashes of light cause 
the emission of photoelectrons from the negative electrode of the photomultiplier. 
The photoelectric current is amplified inside the tube. The output electrode is 
connected to a scaler or ratemeter, as with the Geiger-Müller tube.

photocathode
γ -photon

crystal

photomultiplier
photoelectrons

▲ Figure 11.6 Scintillation counter
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The α-particle scattering experiment
Figure 11.7 shows a photograph taken with an ion microscope, a device which makes use 
of the de Broglie wavelength of gas ions (see Topic 22). It shows a sample of iridium at a 
magnification of about five million. The positions of individual iridium atoms can be seen.

▲ Figure 11.7 Ion microscope photograph of iridium

Photographs like this reinforce the idea that all matter is made of very small particles 
that we call atoms. Experiments performed at the end of the nineteenth and the 
beginning of the twentieth century led most physicists to believe that atoms themselves 
are made from even smaller particles, some of which have positive or negative charges. 
Unfortunately, even the most powerful microscopes cannot show us the internal 
structure of the atom. Many theories were put forward about the structure of the atom, 
but it was a series of experiments carried out by Ernest Rutherford and his colleagues 
around 1910 that led to the birth of the model we now know as the nuclear atom.

The α-particle scattering experiment
In 1911, Rutherford and two of his associates, Hans Geiger and Ernest Marsden, fired a 
beam of α-particles at a very thin piece of gold foil. A zinc sulfide detector was moved 
around the foil to detect the directions in which the α-particles travelled after striking 
the foil (Figure 11.8).

α-source

vacuum microscope

zinc sulfide
detector

gold foil

▲ Figure 11.8 α-scattering experiment
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They discovered that:

»	 the vast majority of the α-particles passed through the foil with very little  
or no deviation from their original path

»	 a small number of particles were deviated through an angle of more than about 10°
»	 an extremely small number of particles (one in ten thousand) were deflected 

through an angle greater than 90°.

From these observations, the following conclusions could be drawn.

»	 The majority of the mass of an atom is concentrated in a very small volume at 
the centre of the atom. Most α-particles would, therefore, pass through the foil 
undeviated.

»	 The centre (or nucleus) of an atom is charged. α-particles, which are also charged, 
passing close to the nucleus will experience a force causing them to deviate.

»	 Only α-particles that pass very close to the nucleus, almost striking it head-on, 
will experience large enough forces to cause them to deviate through angles 
greater than 90°. The fact that so few particles did so confirms that the nucleus 
is very small, and that most of the atom is empty space.

Figure 11.9 shows some of the possible trajectories of the α-particles. Using the nuclear 
model of the atom and equations to describe the force between charged particles, 
Rutherford calculated the fraction of α-particles that he would expect to be deviated 
through various angles. The calculations agreed with the results from the experiment. 
This confirmed the nuclear model of the atom. Rutherford calculated that the diameter 
of the nucleus is about 10−15 m, and the diameter of the whole atom about 10−10 m. 
Figure 11.10 shows the features of the nuclear model of a nitrogen atom.

closest approach

scattered α-particles

gold nucleus

▲ Figure 11.9 Possible trajectories of alpha particles

2 × 10–10 m 6 × 10–15 m 

electron

proton

neutron

▲ Figure 11.10 The diameter of a nitrogen atom is more than 30 000 times bigger than the 
diameter of its nucleus.

Some years later, the α-particle scattering experiment was repeated using α-particles 
with higher energies. Some discrepancies between the experimental results and 
Rutherford’s scattering formula were observed. These seemed to be occurring 
because the high-energy α-particles were passing very close to the nucleus, and were 
experiencing, not only the repulsive electrostatic force, but also a strong attractive 
force. The force does not seem to have any effect outside the nucleus and is, therefore, 
considered to be very short range (a little more than the diameter of nuclei, 10−14 m).  
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This became known as the strong nuclear force. This is the force that holds the 
nucleons in the nucleus together. The strong force acts on protons and neutrons but not 
on electrons.

11.2	 Fundamental	particles
In the nineteenth century, the atom was considered to be the fundamental particle 
from which all matter was composed. A fundamental particle is not formed from other 
particles. The idea of atoms was used to explain the basic structure of all elements. 
Experiments performed at the end of the nineteenth century and beginning of the 
twentieth century, such as the alpha particle scattering experiment, provided evidence 
for the structure of an atom. The conclusions were that all atoms have a nucleus 
containing protons which is surrounded by electrons and that the nucleus is very small 
compared with the size of the atom. A neutral particle was then proposed to explain the 
discrepancy between the mass of the atom and the mass from the number of protons 
(number of positive charges). In 1932 James Chadwick discovered the neutron and 
the fundamental particles were then considered to be the proton, the neutron and the 
electron. The structure of the atom was then considered to be similar to that shown 
earlier in Figure 11.1.

The particles in an atom must experience forces in order to maintain its structure. 
The forces were the gravitational force that acts between all masses (see Topic 13) and the 
electrostatic force that acts between charged objects (see Topic 18). The electrostatic force 
of repulsion is approximately 1036 times greater than the gravitational force of attraction 
between protons. Another attractive force must keep the protons together in the nucleus. 
This force is known as the strong force and acts between nucleons. The force does not 
seem to have any effect outside the nucleus and is, therefore, considered to be very short 
range (a little more than the diameter of nuclei, 10−14 m). There appears to be a limiting 
spacing between nucleons which is similar in different nuclei and this suggests that the 
force is repulsive as soon as the nucleons come close together. The strong force does not act 
on electrons.

The strong force acts on protons and neutrons but not on electrons.

WORKED EXAMPLE 11D

Figure 11.11 illustrates a hydrogen atom with an 
electron orbiting the nucleus.
a State, for the forces acting on the electron and 

the proton:
i their nature
ii their direction.

b Explain why a strong force does not act on the 
electron or proton.

Answers
a i Gravitational force (due to the mass of the electron and proton), electrostatic 

force (due to the charge on the electron and proton)
ii Both forces are attractive and, therefore, directed from the one particle 

towards the other particle.
b The electron is not a nucleon and, hence, is not affected by the strong force. 

There is only one nucleon and the strong force acts between nucleons.

proton (+e)

electron (−e)

+

–

▲ Figure 11.11 Hydrogen atom
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6 State the forces acting on the nucleons of a helium nucleus.

The discovery of antimatter in cosmic radiation supported the theory developed from the special 
theory of relativity and quantum theory that all fundamental particles have a corresponding 
antimatter particle. Each matter and its antimatter particle have the same mass but opposite 
charge. The following particles were required to support the theory: the antiproton, the 
antineutron and the antielectron. The antiparticle may be represented by the corresponding 
symbol for the particle with the opposite sign for the charge or with a bar above it. Therefore, 
the symbols used for the antiproton are p− or p and for the antineutron and n0 or n

_
.

The antielectron or positive electron (positron) was introduced in β-particle decay 
in Topic 11.1. An electron is represented by e− or e and an antielectron (a positron) is 
represented by e+ or e.

Many other particles and their antiparticles were discovered in cosmic radiation 
throughout the twentieth country. These results gave support for the idea that the 
proton and neutron were not fundamental particles.

Hadrons and leptons
The numerous types of subatomic particles are placed into two main categories 
depending on their properties. Those affected by the strong force are called hadrons, 
for example protons and neutrons, and those not affected by the strong force are called 
leptons, for example electrons and positrons.

The many different particles discovered in cosmic radiation have been reproduced in high-
energy collisions of atomic nuclei using particle accelerators such as those at Stanford in 
California and CERN in Switzerland. A vast number of collisions have been carried out and a 
large number of hadrons have been produced. Two of the conclusions to these reactions were:
» the total electrical charge remains constant
» the total number of nucleons generally remains constant.

Many hadrons were detected with masses and properties different from those of protons 
and neutrons. These results gave support for the idea that the proton and neutron were 
not fundamental particles, but were made up of smaller (fundamental) particles.

The quark model of hadrons
The problem of what were considered to be fundamental particles was resolved by the 
quark model for hadrons. In the quark model, the hadrons are made up of fundamental 
particles called quarks. Three types of quark, called flavours of quark, were initially 
introduced: up (u), down (d) and strange (s).

The quark model was developed as more particles were discovered. The total number 
of types of quark or ‘flavours’ is considered to be six. The additional flavours are charm 
(c), bottom (b) and top (t).

The quark flavours have charge and strangeness as shown in Table 11.4.

flavour of quark charge strangeness

up (u) + 2
3 e  0

down (d) − 1
3
e  0

strange (s) − 1
3
e −1

charm (c) + 2
3 e  0

bottom (b) − 1
3
e  0

top (t) + 2
3 e  0

▲ Table 11.4 Charge values for the six quarks

Question
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11
There are also six antiquarks, u–, d

–
, s–, c–, b

–
 and t– and these have the opposite values of charge.

The different possible combinations of quarks and antiquarks explain the many different 
hadron particles. The fractional charge carried by quarks means that only certain 
combinations of quarks occur, to produce hadrons with whole or zero charge.

There are two types of hadron: baryons and mesons.

Protons and neutrons are baryons. Their corresponding antiparticles (p– and n–) have 
opposite electrical charge.

Pions (π) and Kappas (K) are examples of mesons.

A baryon is made up of three quarks or three antiquarks. Hence protons and neutrons 
consist of three quarks.

proton: u u d neutron:     u     d    d

charge  +1e + 2
3 e + 2

3
e − 1

3e charge   0   + 2
3e   − 1

3 e   − 1
3 e

A meson is made up of a quark and an antiquark. For example, a K+ meson is formed 
with an up quark and an antistrange quark. A π+ meson is formed by an up quark and 
an antidown quark.

7 Show that the charge on a) a π+ meson is +e and b) a K− is −e.

8 Show whether the following reaction can occur.  
p + p Æ p + –p + n

Leptons
Leptons are particles that are not affected by the strong force. The electron and neutrino 
and their antimatter partners, the positron and antineutrino, are examples of leptons. 
These types of particle do not appear to be composed of any smaller particles and, 
therefore, leptons are considered to be fundamental particles.

Questions

EXTENSION

In strong interactions, the quark flavour is conserved.

WORKED EXAMPLE 11E

State the values of charge for the antiquarks u and d.

Answer
u           charge − 2

3
e 

and d charge + 1
3e
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WORKED EXAMPLE 11F

Give the equation for the reaction where a proton in the nucleus decays into a 
neutron and emits a β-particle. Describe the reaction in terms of the quark model.

Answer
This is β+ decay, with the emission of a positron.

1
1 
p Æ 1

0 
n + 0

+1 
e + 0

0
v

u → u
u → d
d → d

During the decay of a proton in the nucleus, a neutron is formed and a positron and 
neutrino emitted. In terms of quarks, an up quark changes into a down quark.

EXTENSION

The quark flavour is not conserved as a down quark has changed to an up quark. 
The reaction cannot be due to the strong force. The β-decay must be due to another 
force. This force is called the weak force or weak interaction.

The total lepton number before a reaction is equal to the total lepton number after 
the reaction.

The lepton number is +1 for the particle and −1 for the antiparticle.

The total lepton number before the reaction is zero in the β−-decay above. The lepton 
numbers for the particles after the reaction are +1 for the electron and −1 for the 
antineutrino, giving a total of zero.

Understanding beta decay in terms of quarks and leptons
The emission of electrons or positrons from nuclei was discussed earlier in this topic. 
During the decay of a neutron in the nucleus, a proton is formed and an electron and 
antineutrino emitted. This is β−

 decay. In terms of the fundamental particles, quarks, the 
reaction can be shown as follows:

1
0 
n Æ 1

1 
p + 0

–1 
e + 0

0 

–
v

u    u

d    u

d    d
Note that there are no quarks shown for the electron and antineutrino because these are 
leptons and leptons are not made of quarks.

9 What is the difference between a hadron and a lepton?Question
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SUMMARY

» An	atom	consists	of	a	nucleus	containing	protons	
and	neutrons	surrounded	by	orbiting	electrons.

»	 Most	of	the	mass	of	an	atom	is	contained	in	its	
nucleus.

»	 An	atom	is	neutral	as	it	contains	an	equal	number	
of	protons	and	electrons.

»	 The	unified	atomic	mass	unit	(u)	is	used	as	a	unit	of	
mass	for	subatomic	particles.

»	 Atoms	which	have	gained	or	lost	electrons	are	
charged,	and	are	called	ions.

»	 The	nucleon	number	A	of	a	nucleus	is	the	number	
of	nucleons	(protons	and	neutrons)	in	the	nucleus.

»	 The	proton	number	Z	of	a	nucleus	is	the	number	
of	protons	in	the	nucleus;	hence	the	number	of	
neutrons	in	the	nucleus	is	A	−	Z.

»	 A	nucleus	with	chemical	symbol	X	may	be

	 represented	by:	
nucleon	number	X

»	 Isotopes	are	different	forms	of	the	same	element,	
that	is,	nuclei	with	the	same	proton	number	but	
with	different	nucleon	numbers.

»	 The	nucleon	number	and	the	charge	(number	of	
protons,	Z)	are	conserved	in	nuclear	processes

»	 An	α-particle	is	a	helium	nucleus	(two	
protons	and	two	neutrons).

»	 A	β−-particle	is	a	fast-moving	electron,		
a	β+-particle	is	a	fast	moving	positron.

»	 γ-radiation	consists	of	short-wavelength	
electromagnetic	waves.

»	 In	nuclear	notation	the	emissions	are	represented	
as:	α-particle	4

2
He;	β−-particle 0

–1e or	β+-particle 0
+1e;	

γ-radiation	00	
γ.

»	 α-emission	reduces	the	nucleon	number	of	the	
parent	nucleus	by	4,	and	reduces	the	proton	
number	by	2.

»	 β-emission	causes	no	change	to	the	nucleon	
number	of	the	parent	nucleus,	and	increases	or	
decreases	the	proton	number	by	1.

»	 γ-emission	causes	no	change	to	nucleon	number	
or	proton	number	of	the	parent	nucleus.

»	 For	every	subatomic	particle	there	is	an	
antiparticle	that	has	the	same	mass	but	opposite	
charge	to	the	corresponding	particle.

»	 The	positron	is	the	antiparticle	of	the	electron	and,	
therefore,	has	the	same	mass	as	an	electron	but	a	
charge	of	+e.

»	 α-particles	emitted	from	a	particular	nuclide	have	
discrete	energies.

»	 β-particles	emitted	from	a	particular	nuclide	
have	a	continuous	range	of	energies	due	to	the	
additional	emission	of	neutrinos	or	antineutrinos	
in	β-decay.

»	 The	Rutherford	α-particle	scattering	experiment	
confirmed	the	nuclear	model	of	the	atom:	the	
atom	consists	of	a	small,	positively	charged	
nucleus,	surrounded	by	negatively	charged	
electrons	in	orbit	about	the	nucleus	and	that	the	
vast	majority	of	the	mass	of	the	atom	is	in	the	
nucleus.

»	 The	diameter	of	the	nucleus	is	about	10−15	m;	
the	diameter	of	the	atom	is	about	10−10	m.

»	 Protons	and	neutrons	are	hadrons	and	are	
affected	by	the	strong	force.

»	 The	quark	model	has	six	flavours	of	quark		
(up,	down,	strange,	charm,	bottom	and	top)	
together	with	their	antiquarks.

»	 Hadrons	are	made	up	of	quarks.
»	 Quarks	have	fractional	charge	such	as	±2

3e or	± 1
3e.

»	 Hadrons	combine	quarks	or	antiquarks	to	give	a	
whole	or	zero	charge.

»	 Baryons	contain	three	quarks	(or	three	
antiquarks)	and	mesons	contain	a	quark	and	an	
antiquark.

»	 Protons	are	composed	of	quarks	up,	up	and	
down,	and	neutrons	of	quarks	up,	down	and	
down.

»	 Electrons	and	neutrinos	are	leptons	which	are	
fundamental	particles.

»	 During	β−	decay:	1
0 n Æ 1

1	
p + 0–1 e	(electron) +	00 

–
v	

(antineutrino).
»	 During	β+	decay:	11 p Æ 10 n + 01 e (positron) + 00 v 

(neutrino).
»	 During	β−	decay:	a	down	quark	changes	to	an	up	

quark.
»	 During	β+	decay:	an	up	quark	changes	to	a	down	

quark.

proton	number
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End of topic questions

END OF TOPIC QUESTIONS

1	 Which	of	the	following	is	a	fundamental	particle?
A	 atom B	 electron C	 neutron D	 proton

2	 What	is	the	charge	on	a	strange	quark?
A	 −	13e B	 +	13e C	 −	23e D	 +	23e

3	 What	is	the	speed	of	an	α-particle	with	a	kinetic	energy	of	72	pJ?
A	 15	km	s−1 B	 21	km	s−1 C	 15	Mm	s−1 D	 21	Mm	s−1

4	 State	i	the	number	of	protons	and	ii the	number	of	neutrons	in	the	nucleus	of	the	
following	nuclei:
a	 54

26	
Fe b	 109

47	
Ag c	 196

79	
Au d	 232

94	
Pu

5	 Explain	the	changes	that	take	place	to	the	nucleus	of	an	atom	when	it	emits:
a	 an	α-particle,
b	 a	β-particle,
c	 γ-radiation.

6	 Complete	the	following	radioactive	series.
 235

92	
U → ?

?	
Y	+	?

?	
He

 	?
?	

Y → ?? Z	+	0
–1

e

 	?
?	

Z → ?
? Z	+	?

?	
?

7	 Calculate	the	speed	of:

a	 an	electron	with	kinetic	energy	of	2.4	×	10−16	J,

b	 an	α-particle	with	kinetic	energy	of	2.4	×	10−16	J.

8	 A	stationary	radium	nucleus	(224
88Ra)	of	mass	224	u	spontaneously	emits	an	

α-particle.	The	α-particle	is	emitted	with	an	energy	of	9.2	×	10−13	J,	and	the	
reaction	gives	rise	to	a	nucleus	of	radon	(Rn).
a Write	down	a	nuclear	equation	to	represent	α-decay	of	the	radium	nucleus.
b	 Show	that	the	speed	with	which	the	α-particle	is	ejected	from	the	radium	

nucleus	is	1.7	×	107	m	s−1.
c	 Calculate	the	speed	of	the	radon	nucleus	on	emission	of	the	α-particle.	Explain	

how	the	principle	of	conservation	of	momentum	is	applied	in	your	calculation.

9 a β-radiation	is	emitted	during	the	spontaneous	radioactive	decay	of	an	unstable	
nucleus.
i	 State	the	nature	of	a	β-particle.	 [1]
ii	 State	two	properties	of	β-radiation.	 [2]

b	 The	following	equation	represents	the	decay	of	a	nucleus	of	hydrogen-3		
by	the	emission	of	a	β-particle.	Copy	and	complete	the	equation.		
3
1H	→	……He	+		……β						 [2]

c	 The	β-particle	is	emitted	with	an	energy	of	9.1	×	10−16	J.	Calculate	the	speed	of	
the	β-particle.	 [3]

d A	different	isotope	of	hydrogen	is	hydrogen-2	(deuterium).	Describe	the	
similarities	and	differences	between	the	atoms	of	hydrogen-2	and	hydrogen-3.
	 [2]

Cambridge International AS and A Level Physics (9702) Paper 23 Q6 parts a i and ii, b, c, d 
Oct/Nov 2012

10 a	 Give	one	example	of:
i	 a	hadron,
ii	 a	lepton.	 [1]

b	 Describe,	in	terms	of	the	simple	quark	model:
i	 a	proton,	 [1]
ii	 a	neutron.	 [1]
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c	 Beta	particles	may	be	emitted	during	the	decay	of	an	unstable	nucleus	of	an	

atom.	The	emission	of	a	beta	particle	is	due	to	the	decay	of	a	neutron.
i	 Complete	the	following	word	equation	for	the	particles	produced	in	this	

reaction.	neutron	→	…	+	…	+	…	 [1]
ii	 State	the	change	in	quark	composition	of	the	particles	during		

this	reaction.	 [1]

Cambridge International AS and A Level Physics (9702) Paper 21 Q7 May/June 2016

11	 a	 State	one	difference	between	a	hadron	and	a	lepton.	 [1]
b	 A	proton	within	a	nucleus	decays	to	form	a	neutron	and	two	other	particles.		

A	partial	equation	to	represent	this	decay	is

	 	 	 1
1p	→ 1

0n + .
....
...…	+ .

....

...…

i	 Copy	and	complete	the	equation.	 [2]
ii	 State	the	name	of	the	interaction	or	force	that	gives	rise	to	this	decay.	 [1]
iii	 State	three	quantities	that	are	conserved	in	the	decay.	 [3]

c	 Use	the	quark	composition	of	a	proton	to	show	that	it	has	a	charge	of	+e,		
where	e is	the	elementary	charge.	Explain	your	working.	 [3]

Cambridge International AS and A Level Physics (9702) Paper 22 Q6 Oct/Nov 2016

12	 a	 The	following	particles	are	used	to	describe	the	structure	of	an	atom.
	 electron	 neutron	 proton	 quark
	 State	the	fundamental	particles	in	the	above	list.	 [1]
b	 The	following	equation	represents	the	decay	of	a	nucleus	of	60

27Co to	form		
nucleus	Q	by	β−	emission.	

	 60
27Co	→ A

BQ +	β– + x
i	 Copy	and	complete	Fig.	11.12.	 [1]

value

A

B

▲	 Figure	11.12

ii	 State	the	name	of	the	particle	x.	 [1]

Cambridge International AS and A Level Physics (9702) Paper 23 Q7 May/June 2017

13	 A	neutron	within	a	nucleus	decays	to	produce	a	proton,	a	β−	particle	and	an	
(electron)	antineutrino.		
																								n → p + β− + v−

a	 Use	the	quark	composition	of	the	neutron	to	show	that	the	neutron	has	no	
charge.	 [3]

b	 Copy	and	complete	Fig.	11.13	by	giving	appropriate	values	of	the	charge	and		
the	mass	of	the	proton,	the	β−	particle	and	the	(electron)	antineutrino.	 [2]

proton β− particle antineutrino

charge

mass

▲	 Figure	11.13
Cambridge International AS and A Level Physics (9702) Paper 21 Q8 Oct/Nov 2017
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11
14	 A	graph	of	nucleon	number	A against	proton	number	Z is	shown	in	Fig.	11.14.

217

218

219

216

215

214

213

212

211

210

209

A

80 81 82 83 84 85 86 8887
Z

P

▲ Figure 11.14

	 The	graph	shows	a	cross	(labelled	P)	that	represents	a	nucleus	P.	Nucleus	P	
decays	emitting	an	α	particle	to	form	a	nucleus	Q.	Nucleus	Q	then	decays	by	
emitting	a	β−	particle	to	form	a	nucleus	R.
a	 On	a	copy	of	Fig.	11.14	use	a	cross	to	represent:

i	 nucleus	Q	(label	this	cross	Q),	 [1]
ii	 nucleus	R	(label	this	cross	R).	 [1]

b	 State	the	name	of	the	class	(group)	of	particles	that	includes	the	β−	particle.		 [1]
c	 The	quark	composition	of	one	nucleon	in	Q	is	changed	during	the	emission	of	

the	β−	particle.	Describe	this	change	to	the	quark	composition.	 [1]
Cambridge International AS and A Level Physics (9702) Paper 23 Q7 May/June 2018

15 a	 The	names	of	four	particles	are	listed	below.
	 alpha	 	 	 beta-plus	 	 	 neutron	 	 	 proton
	 State	the	name(s)	of	the	particle(s)	in	this	list	that:

i	 are	not	fundamental,	 [1]
ii	 do	not	experience	an	electric	force	when	situated	in	an	electric	field,	 [1]
iii	 has	the	largest	charge	to	mass	ratio.	 [2]

b	 A	hadron	has	a	charge	of	+e where	e is	the	elementary	charge.	The	hadron	is	
composed	of	only	two	quarks.	One	of	these	quarks	is	an	antidown	(d

–
)	quark.	By	

considering	charge,	state	and	explain	the	name	(flavour)	of	the	other	quark.	 [3]

Cambridge International AS and A Level Physics (9702) Paper 22 Q7 a i & ii, b, March 2019

16 a	 One	of	the	results	of	the	α-particle	scattering	experiment	is	that	a	very	small	
minority	of	the	α-particles	are	scattered	through	angles	greater	than	90°.

	 State	what	may	be	inferred	about	the	structure	of	the	atom	from	this	result.	 [2]
b	 A	hadron	has	an	overall	charge	of	+e,	where	e	is	the	elementary	charge.		

The	hadron	contains	three	quarks.	One	of	the	quarks	is	a	strange	(s)	quark.
i	 State	the	charge,	in	terms	of	e,	of	the	strange	(s)	quark.	 [1]
ii	 The	other	two	quarks	in	the	hadron	have	the	same	charge	as	each	other.
	 By	considering	charge,	determine	a	possible	type	(flavour)	of	the	other	two	

quarks.
	 Explain	your	working.	 [2]

Cambridge International AS and A Level Physics (9702) Paper 21 Q7 May/June 2019

17 a	 Evidence	from	the	nuclear	atom	was	provided	by	the	α-particle	scattering	
experiment.	State	the	results	of	this	experiment.		 [2]

b	 Give	estimates	for	the	diameter	of:
i	 an	atom,	 [1]
ii	 a	nucleus.	 [1]

Cambridge International AS and A Level Physics (9702) Paper 02 Q7 Oct/Nov 2007

End of topic questions
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AS Level review exercise
1 A bullet of mass 2.0 g is fired horizontally into a block of wood of mass 600 g.  

The block is suspended from strings so that it is free to move in a vertical plane.  
The bullet buries itself in the block. The block and bullet rise together through a 
vertical distance of 8.6 cm, as shown in Figure 1.

wood block

8.6 cm

bullet

▲  Figure 1

a Deduce that the potential difference V across the resistor of resistance P is given 

by the expression  V = 
P

P + QE. [2]

E

P

V

Q

▲  Figure 2

a i Calculate the change in gravitational potential energy of the block and bullet.
 [2]

ii Show that the initial speed of the block and the bullet, after they began to 
move off together, was 1.3 m s–1. [1]

b Using the information in aii and the principle of conservation of momentum, 
determine the speed of the bullet before the impact with the block. [2]

c i Calculate the kinetic energy of the bullet just before impact. [2]
ii State and explain what can be deduced from your answers to ci and ai about 

the type of collision between the bullet and the block. [2]

[Total: 9]

Cambridge International AS and A Level Physics (9702) Paper 02 Q3 May/June 2005

2 A potential divider circuit consists of two resistors of resistances P and Q, as shown 
in Figure 2. The battery has e.m.f. E and negligible internal resistance.
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6.0 V

2000 Ω 5000 Ω

V

▲ Figure3

b The resistances P and Q are 2000 Ω and 5000 Ω respectively. A voltmeter is 
connected in parallel with the 2000 Ω resistor and a thermistor is connected in 
parallel with the 5000 Ω resistor, as shown in Figure 3. The battery has e.m.f. 
6.0 V. The voltmeter has infinite resistance.

i State and explain qualitatively the change in the reading of the voltmeter  
as the temperature of the thermistor is raised. [3]

ii The voltmeter reads 3.6 V when the temperature of the thermistor is 19°C. 
Calculate the resistance of the thermistor at 19°C. [4]

[Total: 9]

Cambridge International AS and A Level Physics (9702) Paper 02 Q7 Oct/Nov 2008

3 A spring is placed on a flat surface and different weights are placed on it, as shown in 
Figure 4.

spring

weights

▲ Figure4

 The variation with weight of the compression of the spring is shown in Figure 5.
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▲ Figure5

 The elastic limit of the spring has not been exceeded.
a i Determine the spring constant k of the spring. [2]

ii Deduce that the strain energy stored in the spring is 0.49 J for a compression 
of 3.5 cm. [2]

b Two trolleys of masses 800 g and 2400 g are free to move on a horizontal table. 
The spring in a is placed between the trolleys and the trolleys are tied together 
using thread so that the compression of the spring is 3.5 cm, as shown in  
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Figure 6. Initially, the trolleys are not moving. The thread is then cut and the 
trolleys move apart.

thread

spring

trolley
mass 2400 g

trolley
mass 800 g

▲  Figure 6

i Deduce that the ratio

speed of trolley of mass 800 g
speed of trolley of mass 2400 g

 is equal to 3.0. [2]
ii Use the answers in a ii and b i to calculate the speed of the trolley  

of mass 800 g. [3]

[Total: 9]

Cambridge International AS and A Level Physics (9702) Paper 02 Q2 May/June 2008

4 A shopping trolley and its contents have a total mass of 42 kg. The trolley is being 
pushed along a horizontal surface at a speed of 1.2 m s–1. When the trolley is 
released, it travels a distance of 1.9 m before coming to rest.
a Assuming that the total force opposing the motion of the trolley is constant: 

i calculate the deceleration of the trolley, [2]
ii show that the total force opposing the motion of the trolley is 16 N. [1]

b Using the answer to a ii, calculate the power required to overcome the total  
force opposing the motion of the trolley at a speed of 1.2 m s–1. [2]

c The trolley now moves down a straight slope that is inclined at an angle of  
2.8° to the horizontal, as shown in Figure 7. 

 2.8°

▲  Figure 7

 The constant force that opposes the motion of the trolley is 16 N. Calculate, for 
the trolley moving down the slope:
i the component down the slope of the trolley’s weight,  [2]
ii the time for the trolley to travel from rest a distance of 3.5 m along the  

length of the slope. [4]
d Use you answer to c ii to explain why, for safety reasons, the slope is not made  

any steeper. [1]

[Total: 12]

 Cambridge International AS and A Level Physics (9702) Paper 02 Q3 May/June 2008

5 A car battery has an internal resistance of 0.060 Ω. It is recharged using a battery  
charger having an e.m.f. of 14 V and an internal resistance of 0.10 Ω, as shown in  
Figure 8.
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E

0.060 Ω0.10 Ω

car
battery

battery
charger

14 V

+

−

▲ Figure8

a At the beginning of the recharging process, the current in the circuit is 42 A and 
the e.m.f. of the battery is E (measured in volts).
i For the circuit in Figure 8, state:

1 the magnitude of the total resistance,
2 the total e.m.f. in the circuit. Give your answer in terms of E. [2]

ii Use your answers to i and data from the question to determine the  
e.m.f. of the car battery at the beginning of the recharging process. [2]

b For the majority of the charging time of the car battery, the e.m.f. of the car 
battery is 12 V and the charging current is 12.5 A. The battery is charged at this 
current for 4 hours. Calculate, for this charging time:
i the charge that passes through the battery,  [2]
ii the energy supplied from the battery charger, [2]
iii the total energy dissipated in the internal resistance of the battery  

charger and the car battery. [2]
c Use your answers to b to calculate the percentage efficiency of transfer  

of energy from the battery charger to stored energy in the car battery. [2]

[Total: 12]

Cambridge International AS and A Level Physics (9702) Paper 02 Q6 May/June 2007
6 A ball is thrown against a vertical wall. The path of the ball is shown in Figure 9.  

The ball is thrown from S with an initial velocity of 15.0 m s–1 at 60.0° to the 
horizontal. Assume that air resistance is negligible.

15.0 m s–1

6.15 m

9.95 m

wall
60.0°S F

P

▲ Figure9(nottoscale)

a For the ball at S, calculate:
i its horizontal component of velocity, [1]
ii its vertical component of velocity. [1]

b The horizontal distance from S to the wall is 9.95 m. The ball hits the wall at 
P with a velocity that is at right angles to the wall. The ball rebounds to a point 
F that is 6.15 m from the wall.

 Using your answers to a:

i calculate the vertical height gained by the ball when it travels from S to P, [1]
ii show that the time taken for the ball to travel from S to P is 1.33 s, [1]
iii show that the velocity of the ball immediately after rebounding from the 

wall is about 4.6 m s–1. [1]
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c The mass of the ball is 60 × 10–3 kg.

i Calculate the change in momentum of the ball as it rebounds from the wall. [2]
ii State and explain whether the collision is elastic or inelastic. [1]

[Total: 8]
Cambridge International AS and A Level Physics (9702) Paper 21 Q3 Oct/Nov 2011

7 The variation with time t of the displacement y of a wave X, as it passes a point P, is 
shown in Figure 10. The intensity of wave X is I.

–4.0

0
1.0

2.0

1.0

–2.0

–3.0

–1.0

4.0

3.0

2.0 3.0 4.0
t/m s

y/
cm

5.0

wave X

▲ Figure10

a Use Figure 10 to determine the frequency of wave X. [2]
b A second wave Z with the same frequency as wave X also passes point P. Wave Z 

has intensity 2I. The phase difference between the two waves is 90°. On a copy  
of Figure 10, sketch the variation with time t of the displacement y of wave Z. 
Show your working. [3]

c A double-slit interference experiment is used to determine the wavelength of light 
emitted from a laser, as shown in Figure 11.

0.45 mm

D
double

slit
screen

laser light

▲ Figure11(nottoscale)

 The separation of the slits is 0.45 mm. The fringes are viewed on a screen at a 
distance D from the double slit. The fringe width x is measured for different 
distances D. The variation with D of x is shown in Figure 12.
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▲ Figure12
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i Use the gradient of the line in Figure 12 to determine the wavelength, in nm, 

of the laser light. [4]
ii The separation of the slits is increased. State and explain the effects, if any, on 

the graph of Figure 12. [2]

[Total: 11]

Cambridge International AS and A Level Physics (9702) Paper 21 Q5 May/June 2016

8 A metal ball of mass 40 g falls vertically onto a spring, as shown in Figure 13.
 The spring is supported and stands vertically. The ball has a speed of 2.8 m s−1 

as it makes contact with the spring. The ball is brought to rest as the spring is 
compressed.
a Show that the kinetic energy of the ball as it makes contact with the spring  

is 0.16 J. [2]
b The variation of the force F acting on the spring with the compression x of the 

spring is shown in Figure 14.
 The ball produces a maximum compression XB when it comes to rest. The spring has 

a spring constant of 800 N m−1. Use Figure 14 to:
i calculate the compression XB, [2]
ii show that not all the kinetic energy in a is converted into elastic potential 

energy in the spring. [2]

[Total: 6]

Cambridge International AS and A Level Physics (9702) Paper 21 Q4 May/June 2014

9 a Determine the SI base units of power. [3]
b Figure 15 shows a turbine that is used to generate electrical power from the wind. 

The power P available from the wind is given by

P = CL2ρv3

 where L is the length of each blade of the turbine, ρ is the density of air, v is the 
wind speed and C is a constant.

L

turbine
wind

speed v

▲ Figure15
i Show that C has no units. [3]
ii The length L of each blade of the turbine is 25.0 m and the density ρ of  

air is 1.30 in SI units. The constant C is 0.931. The efficiency of the  
turbine is 55% and the electric power output P is 3.50 × 105 W.  
Calculate the wind speed. [3]

iii Suggest two reasons why the electrical power output of the turbine is  
less than the power available from the wind. [2]

[Total: 11]

Cambridge International AS and A Level Physics (9702) Paper 22 Q1 May/June 2013

metal ball

spring
support

spring

▲ Figure13(nottoscale)

0
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▲ Figure14
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10 a Define potential difference.
  A battery of electromotive force (e.m.f.) 24 V and negligible internal 

resistance is connected to a network of resistors A, B, C and D, as 
shown in Figure 16.

  The resistors A and B in the circuit have equal resistances. The two 
resistors C and D have resistances R and 2.8 Ω. The resistors A and B 
are connected at junction X and the resistors C and D are connected 
at junction Y. The current in the battery is 8.0 A and the current in 
the resistors A and B is 3.0 A.

b Calculate:
i the resistance of resistor A,
ii resistance R.

c Determine the potential difference between points X and Y.
d Calculate:

i the total power dissipated in the resistors A and B,
ii the total power produced by the battery.

e The resistor of resistance R is replaced with a resistor of greater resistance. State 
and explain the effect, if any, of this change on:
i the total power dissipated by the two resistors A and B,
ii the total power produced by the battery.

11 a Define power.
b A chair lift and passengers have a total weight of 3.5 kN. The lift is attached to a 

cable that is connected to a motor, as shown in Figure 17.

cable moving up

return path
of cable

motor

chair lift attached
to cable

horizontal20° horizontal

ground level

▲ Figure17

   The cable is supported so that the lift is above ground level as it is pulled up a 
mountain by the motor. The cable is at an angle of 20° to the horizontal. The 
variation with time t of the speed v of the lift is shown in Figure 18. A constant 
frictional force of 0.40 kN acts against the lift when it is moving at constant speed 
between time t = 8.0 s and t = 108 s.

i Use Figure 18:
 1  to determine the acceleration of the lift between time t = 0 

and t = 8.0 s,
 2    to show that the tension in the cable is 1.6 kN between time  

t = 8.0 s and t = 108 s,
 3    to calculate the work done by the motor to raise the lift 

between time t = 8.0 s and t = 108 s.
ii  The motor has an efficiency of 75%. The tension in the cable is 

1.7 kN at time t = 6.0 s.
 Determine the input power to the motor at this time.
iii  State and explain whether the increase in gravitational potential 

energy of the lift between t = 8.0 and t = 108 s is less than, 
the same as, or greater than the work done by the motor. A 
calculation is not required.
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▲ Figure18
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12.1 R
adian m

easure and angular displacem
ent

Motion in a circle

Learning outcomes
By the end of this topic, you will be able to:

12.1 Kinematics of uniform circular motion
1  define the radian and express angular 

displacement in radians
2  understand and use the concept of angular 

speed
3 recall and use ω = 2π/T and v = r  ω

12.2 Centripetal acceleration
1  understand that a force of constant 

magnitude that is always perpendicular to 
the direction of motion causes centripetal 
acceleration

2  understand that centripetal acceleration 
causes circular motion with a constant 
angular speed

3  recall and use a = r ω 2 and a = v 2/r
4 recall and use F = mrω 2 and F = mv2/r

Starting points
★ Velocity is instantaneous speed in a given direction.
★ An acceleration is change in velocity brought about by a resultant force.
★ Newton’s laws of motion.

12.1 Radian measure and angular displacement
In circular motion, it is convenient to measure angles in radians rather than degrees. 
One degree is, by tradition, equal to the angle of a complete circle divided by 360.

One radian (rad) is defined as the angle subtended at the centre of a circle by an 
arc equal in length to the radius of the circle.

Thus, to obtain an angle in radians, we divide the length of the arc by the radius of the 
circle (see Figure 12.1).

θ = 





s
r

length of arc
radius of circle

=

The angle in radians in a complete circle would be

θ =   r
r

circumference of the circle
radius of circl

= 2
e

π  = 2π

Since the angle of a complete circle is 360°, then

2π rad = 360°

or

1 rad = 57.3°

length
of arc s

q

q = 1 rad
when s = r

radius r

▲ Figure 12.1 θ in radians 
= arc/radius

A LEVEL

 12 
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Angular speed
For an object moving in a circle:

The angular speed is defined as the angle swept out by the radius of the circle per 
unit time.

The angular velocity is the angular speed in a given direction (for example, clockwise). 
The unit of angular speed and angular velocity is the radian per second (rad s–1).

 
ω θ∆

∆angular speed =
t

Figure 12.2 shows an object travelling at constant speed v in a circle of radius r.

In a time Δt the object moves along an arc of length Δs and sweeps out an angle Δθ. 
From the definition of the radian,

Δθ = Δs/r or Δs = rΔθ

Dividing both sides of this equation by Δt,

Δs/Δt = rΔθ/Δt

By definition, for small angles, Δs/Δt is the linear speed v of the object, and Δθ/Δt is the 
angular speed ω. Hence,

v = rω

Also, if an object makes one complete revolution of a circle in time T, the object will 
have rotated through 2π rad. So, its angular speed ω will be given by

ω = 
2π
T

r

v

∆s

∆q

▲ Figure 12.2 Angular 
velocity ω = v/r

WORKED EXAMPLE 12A

A rocket makes a turn in a horizontal circle of radius 150 m. It is travelling at a 
speed of 240 m s–1.

Calculate the angular speed of the aircraft.

Answer
From v = rω, the angular speed ω is 240/150 = 1.6 rad s–1.

1 A car is travelling along a circular path with linear speed 18 m s–1 and angular speed 
0.30 rad s–1. What is the radius of curvature of the track?

2 A ball on a track travels round a complete loop in a time of 1.4 s. Calculate the 
average angular speed of the ball.

Questions
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12.2 Centripetal acceleration and centripetal force
Newton’s first law of motion (see Topic 3.1) tells us that an object with a resultant force 
of zero acting on it will either not be moving at all, or it will be moving in a straight 
line at constant speed (that is, its velocity does not change). The object is said to be in 
equilibrium. (The full conditions of equilibrium require there to be no resultant force 
and no resultant moment acting on the object.)

An object travelling in a circle may have a constant speed, but it is not travelling in 
a straight line. The velocity is changing as velocity is a vector (has magnitude and 
direction) and its direction is changing. A change in velocity means the object is 
accelerating.

This acceleration is towards the centre of the circle. It is called the centripetal 
acceleration. In order to make an object accelerate, there must be a resultant force 
acting on it. This resultant force is called the centripetal force. The centripetal force acts 
towards the centre of the circle, in the same direction as the acceleration. This means 
that the resultant force, the centripetal force, has constant magnitude and always acts at 
right angles to the instantaneous velocity of the object.

Consider a ball on a string which is being swung in a horizontal circle. The tension in 
the string provides the centripetal force.

At any instant, the direction of the ball’s velocity is along the tangent to the circle, as 
shown in Figure 12.3. If the string breaks or is released, there is no longer any tension 
in the string and hence no centripetal force. The ball will travel in the direction of the 
tangent to the circle at the moment of release.

Figure 12.4 shows an object which has travelled at constant speed v in a circular path 
from A to B in time Δt. At A, its velocity is vA, and at B the velocity is vB. Both vA and vB 
are vectors.

The change in velocity Δv may be seen in the vector diagram of Figure 12.5. A vector Δv 
must be added to vA in order to give the new velocity vB.

The angle between the two radii OA and OB is Δθ. This angle is also equal to the angle 
between the vectors vA and vB, because triangles OAB and CDE are similar. Consider 
angle Δθ to be so small that the arc AB may be approximated to a straight line. Then, 
using similar triangles, DE/CD = AB/OA, and Δv/vA = Δs/r or

Δv = Δs(vA/r)

The time to travel either the distance Δs or the angle Δθ is Δt. Dividing both sides of the 
equation by Δt,

Δv/Δt = (Δs/Δt)(vA/r)

and from the definitions of acceleration (a = Δv/Δt) and speed (v = Δs/Δt = vA = vB) we 
have a = v(v/r) or a = v2/r.

This expression can be written in terms of angular speed ω. Since v = rω, then

centripetal acceleration = ωv
r

 =
2

2r

Now, force F is related to acceleration a by the expression F = ma, where m is the mass of 
the object.

centripetal force = mv
r

mr = 
2

2ω

path
of ball

direction
of velocity

direction of force
and acceleration

▲ Figure 12.3 A ball 
swung in a circle on the 
end of a string

r

vB

∆s

B A

O

vA

∆q

▲ Figure 12.4  
Diagram for proof  
of a = v2/r

∆v

vA

vB

D

E

C∆q

▲ Figure 12.5 Vector  
diagram for proof of  
a = v2/r
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WORKED EXAMPLE 12B

 The drum of a spin dryer has a radius of 50 cm and rotates at 720 revolutions per 
minute.
a Show that the angular speed of the drum is about 75 rad s–1.
b Calculate, for a point on the edge of the drum:

i its linear speed
ii its acceleration towards the centre of the drum.

Answers
 a 720 revolutions per minute is 12 revolutions per second. Each revolution is 

2π rad, so the angular speed ω = 2π × 12 = 75 rad s–1.
b i Using v = rω, v = 0.50 × 75 = 38 m s–1 (37.7 m s–1).

ii Using a = v2/r, a = (37.7)2/0.50 = 2800 m s–2 (2840 m s–2).

3 A toy train moves round a circular track of diameter 0.76 m, completing one 
revolution in 12 seconds. Calculate, for this train:

a the linear speed

b the angular speed

c the centripetal acceleration.

4 A stone attached to a string is moving in a horizontal circle of radius 96 cm.  
The stone has mass 64 g and completes one revolution in 0.72 s. Calculate the  
tension in the string, keeping the stone in its circular path.

Questions

Examples of circular motion
When a ball is whirled round on the end of a string, you can see clearly that the tension 
in the string is making the ball accelerate towards the centre of the circle. However, in 
other examples it is not always so easy to see what force is providing the centripetal 
acceleration.

A satellite in Earth orbit experiences gravitational attraction towards the centre of the 
Earth. This attractive force provides the centripetal force and causes the satellite to 
accelerate towards the centre of the Earth, and so it moves in a circle. We shall return to 
this in detail in Topic 13.2.

A charged particle moving at right angles to a magnetic field experiences a constant 
force at right angles to its direction of motion and, therefore, moves in the arc of a circle. 
This will be considered in more detail in Topic 20.3.

For a car travelling in a curved path, the frictional force between the tyres and the road 
surface provides the centripetal force. If this frictional force is not large enough, for 
example if the road is oily or slippery, then the car carries on moving in a straight  
line – it skids.

A passenger in a car that is cornering appears to be flung away from the centre of the 
circle. The centripetal force required to maintain the passenger in circular motion is 
provided through the seat of the car. This force is below the centre of mass M of the 
passenger, causing rotation about the centre of mass (see Figure 12.6). The effect is that 
the upper part of the passenger moves outwards unless another force acts on the upper 
part of the body, preventing rotation.
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centre of
mass M

rotation
about M

force towards
centre of
circle

▲	 Figure 12.6 Passenger	in	a	car	rounding	a	corner

For cornering which does not rely only on friction, the road can be banked (Figure 12.7). 
The road provides a resultant force normal to its surface through contact between 
the tyres and the road. This resultant force F is at an angle to the vertical, and can be 
resolved into a vertical component Fv and a horizontal component Fh, as shown in 
Figure 12.7. Fv is equal to the weight of the vehicle, thus maintaining equilibrium in the 
vertical direction. The horizontal component Fh provides the centripetal force towards 
the centre of the circle. Many roads are banked for greater road safety, so as to reduce 
the chance of loss of control of vehicles due to skidding outwards on the corner, and for 
greater passenger comfort.

An aircraft has a lift force caused by the different rates of flow of air above and below 
the wings. The lift force balances the weight of the aircraft when it flies on a straight, 
level path (Figure 12.8a). In order to change direction, the aircraft is banked so that the 
wings are at an angle to the horizontal (Figure 12.8b). The lift force now has a horizontal 
component which provides a centripetal force to change the aircraft’s direction.

weight

lift lift

a)

weight

lift

lift

b)

▲	 Figure 12.8 An	aircraft	a)	in	straight,	level	flight	and	b)	banking

A centrifuge (Figure 12.9) is a device that is used to spin objects at high speed about an 
axis. It is used to separate particles in mixtures. More massive particles require larger 
centripetal forces in order to maintain circular motion than do less massive ones. As a 
result, the more massive particles tend to separate from less massive particles, collecting 
further away from the axis of rotation. Space research centres, such as NASA, use 
centrifuges which are large enough to rotate a person (Figure 12.10, overleaf).  
Their purpose is to investigate the effects of large accelerations on the human body.

Fv

resultant
force F
of road
on vehicle

weight

Fh

▲	 Figure 12.7 Cornering	
on	a	banked	track
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Motion in a vertical circle
Some theme park rides involve rotation in a vertical circle (Figure 12.11). A person on 
such a ride must have a resultant force acting towards the centre of the circle.

The forces acting on the person are the person’s weight, which always acts vertically 
downwards, and the normal contact force from the seat, which acts at right angles to  
the seat.

▲ Figure 12.11 A big wheel at a theme park

Consider a person moving round a vertical circle at speed v.

At the bottom of the ride, the normal contact force Rb from the seat must provide 
the centripetal force, as well as overcoming the weight W of the person. Figure 12.12 
illustrates the situation.

weight W

weight W

normal
contact
force Rb

normal
contact
force Rt

▲ Figure 12.12 Forces on 
a person on a circular 
ride

▲ Figure 12.9 Separation of a solid 
from a liquid in a laboratory 
centrifuge

▲ Figure 12.10 Centrifuge testing the effect of 
acceleration on the human body

482807_12_CI_AS_Phy_SB_3e_223-230.indd   228 31/05/20   10:22 PM



229

12.2 C
entripetal acceleration and centripetal force

12
The centripetal force is given by

mv2/r = Rb – W

At the top of the ride, the weight W and the normal contact force Rt both act downwards 
towards the centre of the circle. The centripetal force is now given by

mv2/r = Rt + W

This means that the force Rt from the seat at the top of the ride is less than the force Rb 
at the bottom. If the speed v is not large, then at the top of the circle the weight may be 
greater than the centripetal force. The person would lose contact with the seat and fall 
inwards.

WORKED EXAMPLE 12C

A rope is tied to a bucket filled with water, and the bucket is swung in a vertical 
circle of radius 1.2 m. What must be the minimum speed of the bucket at the highest 
point of the circle if the water is to stay in the bucket throughout the motion?

Answer
This example is similar to the problem of the theme park ride. Water will fall out of 
the bucket if its weight is greater than the centripetal force. The critical speed v is 
given by mv2/r = mg or v2 = gr.

Here, v = 3.4 m s–1.

Question 5 At an air show, an aircraft diving at a speed of 180 m s–1 pulls out of the dive by 
moving in the arc of a circle at the bottom of the dive.

a Calculate the minimum radius of this circle if the centripetal acceleration of the 
aircraft is not to exceed five times the acceleration of free fall.

b The pilot has mass 85 kg. What is the resultant force upwards on him at the 
instant when the aircraft is at its lowest point?

SUMMARY

» Angles may be measured in radians (rad). 
One radian is the angle subtended at the centre 
of a circle by an arc of the circle equal in length to 
its radius.

» Angular speed ω is the angle swept out per unit 
time by a line rotating about a point.

» A particle moving along a circle of radius r  
with linear speed v has angular speed ω given 
by v = rω.

» A particle that takes time T to complete one 
revolution of a circle has angular speed ω = 2π/T.

» A resultant force acting towards the centre of the 
circle, called the centripetal force, is required to 
make an object move in a circle.

» An object moving along a circle of radius r with 
linear speed v and angular speed ω has an 
acceleration a towards the centre (the centripetal 
acceleration) given by a = v2/r = rω 2.

» For an object of mass m moving along a circle 
of radius r with linear speed v and angular 
speed ω, the centripetal force F is given by  
F = mv2/r = mrω2.
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END OF TOPIC QUESTIONS

1 State how the centripetal force is provided in the following examples:
a a planet orbiting the Sun,
b a child on a playground roundabout,
c a train on a curved track,
d a passenger in a car going round a corner.

2 NASA’s 20-G centrifuge is used for testing space equipment and the effect of 
acceleration on humans. The centrifuge consists of an arm of length 17.8 m, 
rotating at constant speed and producing an acceleration equal to 20 times the 
acceleration of free fall. Calculate:
a the angular speed required to produce a centripetal acceleration of 20g,
b the rate of rotation of the arm (g = 9.81 m s–2).

3 A satellite orbits the Earth 200 km above its surface. The acceleration towards the 
centre of the Earth is 9.2 m s–2. The radius of the Earth is 6400 km. Calculate:
a the speed of the satellite,
b the time to complete one orbit.

4 A light rigid rod is pivoted at one end C so that the rod rotates in a vertical circle at 
constant speed as shown in Fig. 12.13.

ball,
mass m

light rod

C

0.72 m

▲ Figure 12.13

 A small ball of mass m is fixed to the free end of the rod so that the ball moves in a 
vertical circle. When the ball is vertically above point C, the tension T in the rod is 
given by

 T = 2mg

 where g is the acceleration of free fall.
a i Explain why the centripetal force on the ball is not equal to 2mg. [2]

ii State, in terms of mg:
1 the magnitude of the centripetal force, [1]
2 the tension in the rod when the ball is vertically below point C. [1]

b The distance from point C to the centre of the ball is 0.72 m.
 Determine, for the ball:

i the angular speed, [3]
ii the linear speed. [2]

Cambridge International AS and A Level Physics (9646) Paper 03 Q2 parts a and b  
Oct/Nov 2010
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	 13	 Gravitational	fields

Learning outcomes
By the end of this topic, you will be able to:

13.1 Gravitational field
1  understand that a gravitational field is 

an example of a field of force and define 
gravitational field as force per unit mass

2 represent a gravitational field by means of 
field lines

13.2 Gravitational force between point masses
1  understand that, for a point outside a 

uniform sphere, the mass of the sphere 
may be considered to be a point mass at its 
centre

2  recall and use Newton’s law of gravitation  
F = Gm1m2/r2 for the force between two point 
masses

3  analyse circular orbits in gravitational fields 
by relating the gravitational force to the 
centripetal acceleration it causes

4  understand that a satellite in a 
geostationary orbit remains at the same 
point above the Earth’s surface, with an 

orbital period of 24 hours, orbiting from 
west to east, directly above the Equator

13.3 Gravitational field of a point mass
1  derive, from Newton’s law of gravitation 

and the definition of gravitational field, the 
equation g = GM/r2 for the gravitational field 
strength of a point mass

2 recall and use g = GM/r2

3  understand why g is approximately constant 
for small changes in height near the Earth’s 
surface

13.4 Gravitational potential
1  define gravitational potential at a point  

as the work done per unit mass in bringing  
a small test mass from infinity to the point

2  use Φ = −GM/r for the gravitational potential 
in the field due to a point mass

3  understand how the concept of gravitational 
potential leads to the gravitational potential 
energy of two point masses and use  
Ep = −GMm/r

Starting points
★ There is a force of attraction between all masses. On Earth, the force 

attracting objects to the Earth is referred to as ‘force due to gravity’ and is 
called weight.

★ At the surface of the Earth, all objects have the same acceleration when 
falling freely (no air resistance).

★ A resultant force acting towards the centre of the circle, called the centripetal 
force, is required to make an object move in a circle.

★ For an object moving in a circle, v = rw.

13.1 Gravitational field
We are familiar with the fact that the Earth’s force of gravity is responsible for our 
weight, the force which pulls us towards the Earth. Isaac Newton concluded that the 
Earth’s force of gravity is also responsible for keeping the Moon in orbit.

We now know that every mass attracts every other mass. This force is known as the 
force due to gravity – the gravitational force. The region around a mass where this 
gravitational force is felt is known as a gravitational field.
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A gravitational field is a region of space where a mass experiences a force.

Gravitational field strength
The size of the force due to gravity may change. For example, as an object moves 
from the Earth’s surface into space, so the gravitational force on it decreases. 
The gravitational field strength is said to change.

The gravitational field strength at a point is defined as the force per unit mass 
acting on a small mass placed at that point.

The force per unit mass is also a measure of the acceleration of free fall (from Newton’s 
second law of motion F = ma, see Topic 3.1). Thus, the gravitational field strength 
is given by F/m = g, where F is in newtons and m is in kilograms. This means that 
the gravitational field strength at the Earth’s surface is about 9.81 N kg−1 since the 
acceleration of free fall is 9.81 m s−2. Note that the unit N kg−1 is equivalent to the unit 
of acceleration, m s−2. As you will see for electric fields (see Topic 18) we also have two 
equivalent units for electric field strength, N C−1 and V m−1. Although there is a clear 
analogy between N kg−1 and N C−1, there is no direct link between m s−2 and V m−1.

Gravitational field lines
A gravitational field may be represented as a series of gravitational field lines.

A gravitational field line is the direction of the gravitational force acting on a  
point mass.

For any gravitational field:
» the arrow on each line shows the direction of the gravitational force at that 

point situated on the line
» the gravitational field lines are smooth curves which never touch or cross
» the strength of the gravitational field is indicated by the closeness of the lines: 

the closer the lines, the stronger the gravitational field.

Note that gravitational field strength is a vector quantity.

Some aspects of gravitational fields are illustrated in Figure 13.1.

constant field strength decreasing field strength increasing field strength

▲ Figure 13.1 Gravitational fields

As we shall see in Topic 18, there is similarity between aspects of the representation of 
gravitational fields and electric fields.
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13.2 Gravitational force between point masses
Figure 13.2 shows the gravitational fields in the regions around a point mass and a 
uniform sphere.

point mass

▲ Figure 13.2 The gravitational field of a uniform sphere is similar to that of a point mass.

The gravitational field outside the spherical uniform mass is radial. That is, all the lines 
of force appear to converge towards the centre of the uniform sphere. This means that, 
from outside the sphere, the sphere acts as a point mass that is situated at its centre.

For a point outside a sphere whose mass is uniformly distributed, the sphere 
behaves as a point mass with its mass concentrated at its centre.

Isaac Newton showed that the Earth’s force of gravity extends into space, but weakens 
with distance according to an inverse square law. That is, the Earth’s force of gravity 
varies inversely with the square of the distance from the centre of the Earth. If you go 
one Earth radius above the Earth’s surface, the force is a quarter of the force on the 
Earth’s surface. This is part of Newton’s law of gravitation.

Newton’s law of gravitation states that two point masses attract each other with a 
force that is proportional to the product of their masses and inversely proportional 
to the square of their separation.

Hence, if F is the force of attraction between two point masses of masses m1 and m2 with 
distance r between them, then

F ∝ m1m2/r2

or

F = Gm1m2/r2

where the constant of proportionality G is called the gravitational constant.

The value of G is 6.67 × 10−11 N m2 kg−2.

Note: Newton’s law of gravitation specifies that the two masses are point masses. 
However, the law still holds where the diameter/size of the masses is small compared 
to their separation. For example, the Sun and the Earth are not point masses. However, 
they may be considered to be point masses because their separation (1.5 × 108 km) is 
very large in comparison to their diameters (Earth, 1.3 × 104 km; Sun, 1.4 × 106 km).

It is possible to measure the gravitational constant G in a school laboratory, but the 
force of gravity between laboratory-sized masses is so small that it is not easy to obtain a 
reliable result.

482807_13_CI_AS_Phy_SB_3e_231-242.indd   233 30/05/20   3:48 PM



234

13
 G

r
av

it
at

io
n

a
l 

fi
e

ld
s

13
 WORKED EXAMPLE 13A

The masses of the Sun and the Earth are 2.0 × 1030 kg and 6.0 × 1024 kg respectively. 
The separation of their centres is 1.5 × 108 km.

Calculate the force of attraction between the Sun and the Earth.

Answer
The separation is large in comparison to their radii so, using Newton’s law of 
gravitation,

F = Gm1m2/r2

F = (6.67 × 10−11 × 2.0 × 1030 × 6.0 × 1024)/(1.5 × 108 × 103)2

      = 3.6 × 1022 N

1 The mass of the dwarf planet Pluto is 1.2 × 1022 kg. Calculate the force of attraction 
between Pluto and the Sun, mass 2.0 × 1030 kg, when their separation is 5.9 × 109 km.

Circular orbits
Most planets in the Solar System have orbits which are nearly circular. We now bring 
together the idea of a gravitational force and that of a centripetal force (see Topic 12.2) to 
derive a relation between the period and the radius of the orbit of a planet describing a 
circular path about the Sun, or a satellite moving round the Earth or another planet.

Consider a planet of mass m in circular orbit about the Sun, of mass M, as shown in 
Figure 13.3.

If the radius of the orbit is r, the gravitational force Fgrav between the Sun and the planet 
is, by Newton’s law of gravitation,

Fgrav = GMm/r2

It is this force that provides the centripetal force as the planet moves in its orbit. Note 
that the planet is changing direction continuously and is, therefore, not in equilibrium. 
The gravitational force provides the accelerating force – the centripetal force.

The centripetal force Fcirc is given by

Fcirc = mv2/r

where v is the linear speed of the planet. As has just been stated,

Fgrav = Fcirc

orbit of planet

planet mass m

speed vSun mass M

r

▲ Figure 13.3 Circular orbit of a planet about the Sun

Question
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Thus

GMm/r2 = mv2/r

The period T of the planet in its orbit is the time required for the planet to travel a 
distance 2πr. It is moving at speed v, so

v = 2πr/T

Putting this into the equation above, we have

GMm/r2 = m(4π2r2/T 2)/r

or, simplifying,

T 2 = (4π2/GM)r3

Another way of writing this is

T 2/r3 = 4π2/GM

Look at the right-hand side of this equation. The quantities π and G are constants. If we 
are considering the relation between T and r for planets in the Solar System, then M is 
the same for each planet because it is the mass of the Sun.

This equation shows that for planets or satellites describing circular orbits about the 
same central body, the square of the period is proportional to the cube of the radius of 
the orbit.

This relation is known as Kepler’s third law of planetary motion. Johannes Kepler 
(1571–1630) analysed data collected by Tycho Brahe (1546–1601) on planetary 
observations. He showed that the observations fitted a law of the form T2 ∝ r3. 
Fifty years later Newton showed that an inverse square law of gravitation together with 
the idea of centripetal acceleration and the second law of motion, gave an expression of 
exactly the same form. Newton cited Kepler’s law in support of his law of gravitation. 
In fact, the orbits of the planets are not circular, but elliptical, a fact recognised by 
Kepler. The derivation is simpler for the case of a circular orbit.

Table 13.1 gives information about T and r for planets of the Solar System. The last 
column shows that the value of T2/r3 is indeed a constant. Moreover, the value of T2/r3 
agrees very well with the value of 4π2/GM which is 2.97 × 10−25 yr2 m−3.

planet T/(Earth years) r/km T 2/r3(yr2 km−3)

Mercury 0.241   57.9 × 106 2.99 × 10−25

Venus 0.615 108.0 × 106 3.00 × 10−25

Earth 1.00 150.0 × 106 2.96 × 10−25

Mars 1.88 228.0 × 106 2.98 × 10−25

Jupiter 11.9 778.0 × 106 3.01 × 10−25

Saturn 29.5      1.43 × 109 2.98 × 10−25

Uranus 84.0      2.87 × 109 2.98 × 10−25

Neptune 165     4.50 × 109 2.99 × 10−25

Pluto* 248     5.90 × 109 2.99 × 10−25

(average 2.99 × 10−25)

*Since 2006, Pluto has been classified as a ‘dwarf planet’.

▲ Table 13.1
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Satellites are widely used in telecommunication. Many communication satellites are 
placed in what is called a geostationary orbit. That is, they are in equatorial orbits 
with exactly the same period of rotation as the Earth (24 hours), and move in the same 
direction as the Earth (west to east) so that they are always above the same point on the 
Equator. Such satellites are called geostationary satellites. Details of the orbit of such a 
satellite are worked out in the example which follows.

▲ Figure 13.4 Communication satellite

WORKED EXAMPLE 13B

For a geostationary satellite, calculate:
a the height above the Earth’s surface,
b the speed in orbit.
 (Radius of Earth = 6.38 × 106 m; mass of Earth = 5.98 × 1024 kg.)

Answers
a The period of the satellite is 24 hours = 8.64 × 104 s.
 Equating the force of gravity to centripetal force, GMm/r2 = mv2/r, which rearranges to 

give rv2 = GM where r is the distance from the Earth’s centre to the satellite.
 Since v = 2πr/T, r(2πr/T)2 = GM and r 3 = GMT2/4π2

 r 3 = 6.67 × 10−11 × 5.98 × 1024 × (8.64 × 104)2/4π2, giving r 3 = 7.54 × 1022 m3.
 Taking the cube root, the radius r of the orbit is 4.23 × 107 m. The distance above 

the Earth’s surface is (4.23 × 107 −  6.38 × 106) = 3.59 × 107 m.
b Since v = 2πr/T, the speed is given by
 v = 2 π × 4.23 × 107/8.64 × 104 = 3070 m s−1.

 2 The radius of the Moon’s orbit about the Earth is 3.84 × 108 m, and its period is  
27.4 days. Calculate the period of the orbit of a satellite orbiting the Earth just  
above the Earth’s surface (radius of Earth = 6.38 × 106 m).

Question
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EXTENSION

Weightlessness
Suppose that you are carrying out an experiment 
involving the use of a newton balance in a lift. When 
the lift is stationary, an object of mass 10 kg, suspended 
from the balance, will give a weight reading of 10g N. 
If the lift accelerates upwards with acceleration 0.1g, 
the reading on the balance increases to 11g N. If the 
lift accelerates downwards with acceleration 0.1g, the 
apparent weight of the object decreases to 9g N. If, by 
an unfortunate accident, the lift cable were to break and 
there were no safety restraints, the lift would accelerate 
downwards with acceleration g. The reading on the 
newton balance would be zero. If, during the fall, you 
were to drop the pencil with which you are recording 
the balance readings, it would not fall to the floor of 

the lift but would remain stationary with respect to 
you. Both you and the pencil are in free fall. You are 
experiencing weightlessness.

Figure 13.5 illustrates your predicament. It might 
be more correct to refer to this situation as apparent 
weightlessness, as you can only be truly weightless in 
the absence of a gravitational field. That is, at an infinite 
distance from the Earth or any other attracting object.

A similar situation arises in a satellite orbiting the 
Earth. The force of gravity, which provides the 
centripetal force, is causing it to fall out of its expected 
straight-line path. People and objects inside the satellite 
are experiencing a free fall situation and apparent 
weightlessness.

acceleration
0.1g downwards

at rest acceleration
0.1g upwards

acceleration
g downwards

10g N 11g N 9g N zero!

▲ Figure 13.5 Lift experiment on weightlessness

13.3 Gravitational field of a point mass
Of course, all the masses we come across in the laboratory have a finite size. But for 
calculations involving gravitational forces, it is fortunate that a spherical mass behaves 
as if it were a point mass at the centre of the sphere, with all the mass of the sphere 
concentrated at that point.

From Newton’s law of gravitation, the attractive force on a mass m caused by another 
mass M, with a distance of r between their centres, is given by

F = GMm/r2

This means that the force per unit mass or gravitational field strength g is given by

g = F
m

 = GM
r2 
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The field strengths due to masses that you find in a laboratory are tiny. For example, 
the field strength one metre away from an isolated mass of one kilogram is only 
7 × 10−11 N kg−1. However, field strengths due to the masses of objects such as the Earth 
or Moon are much larger. We already know that the field strength due to the Earth 
at the surface of the Earth is about 10 N kg−1. We can use this information to deduce 
information about the Earth, for example, the mass of the Earth. Look at the example 
that follows.

 WORKED EXAMPLE 13C

The radius of the Earth is 6.38 × 106 m and the gravitational field strength at its 
surface is 9.81 N kg−1.
a Assuming that the field is radial, calculate the mass of the Earth.
b The radius of the Moon’s orbit about the Earth is 3.84 × 108 m. Calculate the 

strength of the Earth’s gravitational field at this distance.
c The mass of the Moon is 7.40 × 1022 kg. Calculate the gravitational attraction 

between the Earth and the Moon.  
(Gravitational constant G = 6.67 × 10−11 N m2 kg−2.)

Answers
a Using g = GM/r2, we have

 M = gr2/G  =  9.81 ×  (6.38 × 106)2/6.67 × 10−11 = 5.99 × 1024 kg
b Using g = GM/r2, we have

 g = 6.67 × 10−11 × 5.99 × 1024/(3.84 × 108)2 = 2.71 × 10−3 N kg−1

c Using F = GMm/r2, we have
 F = 6.67 × 10−11 ×  5.99 × 1024 × 7.40 × 1022/(3.84 × 108)2 = 2.00 × 1020 N

3 The mass of Jupiter is 1.9 × 1027 kg and its radius is 7.1 × 107 m. Calculate the 
gravitational field strength at the surface of Jupiter.  
(Gravitational constant G = 6.67 × 10−11 N m2 kg−2.)

Acceleration of free fall
We have already seen that gravitational field strength is defined as force per unit mass 
and that the gravitational field strength at the Earth’s surface is also a measure of the 
acceleration of free fall. Thus, at a distance r from the centre of a uniform sphere of mass M

g = F/m = GM/r2

If we assume that the Earth is a uniform sphere with approximately uniform density, we 
can apply the equation at and beyond the Earth’s surface.

The radius r of Earth is approximately 6.4 × 103 km. If we move a few kilometres h above 
the Earth’s surface, then the acceleration of free fall becomes

gh = GM/(r + h)2

Now, h is much smaller than r and so

r2 ≈ (r + h)2

and

g ≈ gh

For small distances above the Earth’s surface, g is approximately constant and is 
called the acceleration of free fall.

Question
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Mass and weight
In Topic 3, mass was said to be a measure of the inertia of an object to changes in 
velocity. Unless the object is travelling at speeds close to that of light, its mass is constant.

In a gravitational field, by definition, there is a force acting on the mass equal to the 
product of mass and gravitational field strength. This force is called the weight.

For an object of mass m in a gravitational field of strength g, the weight W is given by

weight = mass × gravitational field strength

or

W = mg

Although mass is invariant, weight depends on gravitational field strength. For example, 
a person of mass 60 kg has a weight of approximately 600 N on Earth, but only 100 N on 
the Moon, although the mass is still 60 kg.

13.4 Gravitational potential
In Topic 18.5, we will meet ideas about electric potential energy and electric potential. 
There is a very strong analogy between gravitational and electric fields, and this will 
help when we talk about electrical potential energy and electrical potential.

Gravitational potential at a point in a gravitational field is defined as the work 
done per unit mass in bringing a small test mass from infinity to the point.

The symbol for gravitational potential is Φ and its unit is the joule per kilogram (J kg−1). 
For a field produced by a point mass, the equation for the potential at a point distance r 
from the mass M in the field is

Φ = −GM/r

Note the minus sign.

The gravitational potential at infinity is defined as being zero. The gravitational force is 
always attractive and so, as the test mass moves from infinity, work can be done by the 
test mass and as a result its potential decreases. The gravitational potential is negative.

This is entirely consistent with the electrical case introduced in Topic 18.5. We have 
a negative electric potential when the field is produced by a negative charge, so that 
the force between the negative field-producing charge and the positive test charge is 
attractive. Here the attractive gravitational force between the field-producing mass and 
the test mass also gives a negative potential.

Gravitational potential is work done per unit mass. For an object of mass m, then the 
gravitational potential energy of the object will be m times as large as for an object of 
unit mass.

gravitational potential energy = mass × gravitational potential

= mΦ = −GMm/r

For two isolated point masses m1 and m2 situated a distance r apart in a vacuum, then 
the gravitational potential energy Ep of the two masses is given by

Ep = − 
Gm1m2

r 

482807_13_CI_AS_Phy_SB_3e_231-242.indd   239 30/05/20   3:48 PM



240

13
 G

r
av

it
at

io
n

a
l 

fi
e

ld
s

13
WORKED EXAMPLE 13D

How much work is done by the gravitational field in moving a mass m of 2.0 kg from 
infinity to a point which is a distance 0.40 m from a mass M of 30 kg?  
(Gravitational constant G = 6.67 × 10−11 N m2 kg−2.)

Answer
The work which would have to be done by an external force is simply the change in 
gravitational potential energy. The potential energy at infinity is zero, so

W = mΦ = −mGM/r = −2.0 × 6.67 × 10−11 × 30/0.40 = −1.0 × 10−8  J

This is the work which would be done by an external force and is negative, so the 
work done by the field is positive and is equal to 1.0 × 10−8  J.

Note the similarity in the method of calculation with the electric potential energy 
calculation in Topic 18.5.

4 The Earth has mass 6.0 × 1024 kg and radius 6.4 × 106 m. A meteorite of mass 220 kg 
moves from an infinite distance to the Earth’s surface. The meteorite starts from rest.

 Calculate:

a the change in gravitational potential energy of the meteorite

b the speed at which it strikes the Earth.

 (Gravitational constant G = 6.67 × 10−11 N m2 kg−2.)

 SUMMARY

» A gravitational field is a region around a mass 
where another mass feels a force.

» The direction of gravitational field lines shows the 
direction of the force on a mass placed in the field 
and the separation shows the field strength.

» From a point outside a spherical mass, the mass 
of the sphere can be treated as a point mass at its 
centre.

» Gravitational field strength g is the force per unit 
mass: g = F/m is also the acceleration of free fall.

» The attractive force between two point masses is 
proportional to the product of their masses and 
inversely proportional to the square of the distance 
between them. This is Newton’s law of gravitation: 
F = Gm1m2/r2.

» The gravitational field strength g at a point in the 
gravitational field of a point mass M is g = GM/r2.

» Over a small area close to the Earth’s surface g is 
approximately constant.

» For a circular orbit in a gravitational field: 
gravitational field strength = centripetal 
acceleration.

» The gravitational potential at a point in a 
gravitational field is the work done per unit mass in 
bringing a small test mass from infinity to the point.

» The potential at a point in a field produced by a 
point mass is: Φ = −GM/r.

» Gravitational potential energy at a point in a field 
produced by a point mass is: 
EP = Φ m = GMm/r.

END OF TOPIC QUESTIONS

1 The radius of Mars is approximately 3.4 × 106 m. The acceleration of free fall at the 
surface of Mars is 3.7 m s−2. The gravitational constant G is 6.67 × 10−11N m2 kg−2. 
Use this information to estimate the mean density of Mars.

2 The times for Mars and Jupiter to orbit the Sun are 687 days and 4330 days 
respectively. The radius of the orbit of Mars is 228 × 106 km. Calculate the radius of 
the orbit of Jupiter.

Question
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End of topic questions

3 The weight of a passenger in an aircraft on the runway is W. His weight when 
the aircraft is flying at an altitude of 16 km above the Earth’s surface is Wa. 
The percentage change F in his weight is given by F = 100(Wa − W)/W%. Taking the 
radius of the Earth as 6.378 × 103 km, calculate F. Calculate also the percentage 
change P in his gravitational potential energy.

4 Fig. 13.6 illustrates the apparatus used by Cavendish in 1798 to find a value for 
the gravitational constant G. In a school experiment using similar apparatus, two 
lead spheres are attached to a light horizontal beam which is suspended by a 
wire. When a flask of mercury is brought close to each sphere, the gravitational 
attraction causes the beam to twist through a small angle. From measurements of 
the twisting (torsional) oscillations of the beam, a value can be found for the force 
producing a measured deflection. G can then be calculated if the large and small 
masses are known.

 

from above

torsion
measurement

▲ Figure 13.6 Cavendish’s experiment for G

a In such an experiment, one lead sphere has mass 6.50 × 10−3 kg and the mass of 
the mercury flask is 0.740 kg. Calculate the force between them when they are 
72.0 mm apart. (Gravitational constant G = 6.67 × 10−11 N m2 kg−2.)

b Comment on the size of the force.

5 The gravitational field strength at the surface of the Moon is 1.62 N kg−1. The radius 
of the Moon is 1740 km.
a Show that the mass of the Moon is 7.35 × 1022 kg.
b The Moon rotates about its axis (as well as moving in orbit about the Earth). In the 

future, scientists may wish to put a satellite into an orbit about the Moon, such 
that the satellite remains stationary above one point on the Moon’s surface.
i Explain why this orbit must be an equatorial orbit.
ii The period of rotation of the Moon about its axis is 27.4 days. Calculate the 

radius of the required orbit. (G = 6.67 × 10−11 N m2 kg−2.)

6 a State Newton’s law of gravitation. [2]
b Some planets in the Solar System have several moons (satellites) that have 

circular orbits about the planet.
 The planet and each of its moons may be considered to be point masses.
 Show that the radius x of a moon’s orbit is related to the period T of the orbit by 

the expression

 GM = 
4π2 x3

T 2 

 where G is the gravitational constant and M is the mass of the planet.  
Explain your working. [3]
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c The planet Neptune has eight moons, each in a circular orbit of radius x and 

period T. The variation with T2 of x3 for some of the moons is shown in Fig. 13.7.
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▲ Figure 13.7

 Use Fig. 13.7 and the expression in b to determine the mass of Neptune. [4]

Cambridge International AS and A Level Physics (9702) Paper 43 Q1 Oct/Nov 2015

7 a State Newton’s law of gravitation. [2]
b The planet Jupiter and one of its moons, Io, may be considered to be uniform 

spheres that are isolated in space. Jupiter has radius R and mean density ρ. 
Io has mass m and is in a circular orbit about Jupiter with radius nR, as 
illustrated in Fig. 13.8.

 

nR

IoJupiter
radius R
density r

▲ Figure 13.8

 The time for Io to complete one orbit of Jupiter is T. Show that the time T is 
related to the mean density ρ of Jupiter by the expression

 ρT2 = 
3πn3

G 

 where G is the gravitational constant. [4]
c i The radius R of Jupiter is 7.15 × 104 km and the distance between the centres 

of Jupiter and Io is 4.32 × 105 km. The period T of the orbit of Io is 42.5 hours. 
Calculate the mean density ρ of Jupiter. [3]

ii The Earth has a mean density of 5.5 × 103 kg m−3. It is said to be a planet 
made of rock. By reference to your answer in i, comment on the possible 
composition of Jupiter. [1]

Cambridge International AS and A Level Physics (9702) Paper 42 Q1 Oct/Nov 2017
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14.1 Therm
al equilibrium

A LEVEL

Temperature	 14	

Starting points
★	 Temperature	measures	the	degree	of	hotness	of	an	object,	not	the	amount	of	

thermal	energy	in	it.
★	 Temperature	is	measured	using	a	thermometer.
★	 All	matter	consists	of	atoms	or	groups	of	atoms	called	molecules.
★	 Solid,	liquid	and	gas	are	three	different	states	of	matter.
★	 The	state	of	matter	depends	on	the	forces	between	the	atoms	or	molecules	

and	their	spacing.
★	 In	a	solid	the	atoms	or	molecules	are	held	in	fixed	positions	by	strong	

forces	and	they	vibrate	about	these	positions	with	energy	that	depends	on	
temperature.

★	 In	a	liquid	the	forces	between	atoms	or	molecules	are	still	strong	but	are	no	
longer	rigid	and	thus	the	atoms	or	molecules	can	move	freely	within	the	body	
of	the	liquid	with	energy	that	depends	on	temperature.

★	 In	a	gas	the	forces	between	atoms	or	molecules	are	negligible.	The	particles	
are	far	apart	and	in	rapid,	random	motion	with	energy	that	depends	on	
temperature.

★	 A	substance	can	change	state	when	energy	is	involved.

14.1 Thermal equilibrium
Our everyday idea of temperature is based on our sense of touch. Putting your hand 
into a bowl containing ice immediately gives a sense of cold; putting the other hand into 
a bowl of warm water gives the sense of something that is hot (Figure 14.1, overleaf). 
Intuitively, we would say that the water is at a higher temperature than the ice.

Learning outcomes
By	the	end	of	this	topic,	you	will	be	able	to:

14.1 Thermal equilibrium
1	 	understand	that	(thermal)	energy	is	

transferred	from	a	region	of	higher	
temperature	to	a	region	of	lower	
temperature

2	 	understand	that	regions	of	equal	
temperature	are	in	thermal	equilibrium

14.2 Temperature scales
1	 	understand	that	a	physical	property	that	

varies	with	temperature	may	be	used	for	
the	measurement	of	temperature	and	state	
examples	of	such	properties,	including	
the	density	of	a	liquid,	volume	of	a	gas	at	
constant	pressure,	resistance	of	a	metal,	
e.m.f.	of	a	thermocouple

2	 	understand	that	the	scale	of	thermodynamic	
temperature	does	not	depend	on	the	
property	of	any	particular	substance

3	 	convert	temperatures	between	kelvin	and	
degrees	Celsius	and	recall	that		
T/K	= θ /°C	+ 273.15

4	 	understand	that	the	lowest	possible	
temperature	is	zero	kelvin	on	the	
thermodynamic	temperature	scale	and	that	
this	is	known	as	absolute	zero

14.3 Specify heat capacity and specific latent heat
1	 define	and	use	specific	heat	capacity
2	 	define	and	use	specific	latent	heat	and	

distinguish	between	specific	latent	heat	
of	fusion	and	specific	latent	heat	of	
vaporisation
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▲	 Figure 14.1

Think about a thick metal bar with one end at a higher temperature than the other.  
For example, one end can be heated by pouring hot water over it, and the other end 
cooled by holding it under a cold-water tap. The effect of the temperature difference 
between the ends is that thermal energy is transferred along the bar from the high 
temperature end to the low temperature end. We can think of this in terms of the 
vibrations of the atoms of the metal. One atom passes on some of its vibrational energy 
to its neighbour, which originally had less. If the bar is removed from the arrangement 
for keeping the ends at different temperatures, eventually the whole of the bar will end 
up in equilibrium at the same temperature. When different regions in thermal contact 
are at the same temperature, they are said to be in thermal equilibrium.

Think about a swimming pool and a cup of water that are at the same temperature. 
The swimming pool will contain much more thermal energy than the cup of water. 
However, because they are at the same temperature, there is no movement of thermal 
energy from the pool to the cup of water. The pool and the cup of water are in thermal 
equilibrium because no thermal energy is being transferred and they are at the same 
temperature.

14.2 Temperature scales
In Physics, we look for ways of defining and measuring quantities. In the case of 
temperature, we will first look at ways of measuring this quantity, and then think about 
the definition.

Many physical properties change with temperature. Most materials (solids, liquids 
and gases) expand as their temperature is increased. This means that the density of a 
liquid or the volume of a gas change with temperature change. The electrical resistance 
of a metal wire increases as the temperature of the wire is increased (see Topic 9.3). 
In a thermocouple, one end of each of two wires of different metals are twisted 
together and the other ends are connected to the terminals of a sensitive voltmeter. 
An e.m.f. is produced and the reading on the voltmeter depends on the temperature of 
the junction of the wires (Figure 14.2). All these properties may be used in different 
types of thermometer. The relationship between the physical property measured and 
temperature is not always proportional, so a calibration curve must be obtained before 
the thermometer can be used to measure temperature.

EXTENSION

A thermometer is an instrument for measuring temperature. The physical property 
on which a particular thermometer is based is called the thermometric property, 
and the working material of the thermometer, the property of which varies 
with temperature, is called the thermometric substance. Thus, in the familiar 

e.
m

.f
./V

temperature/°C

▲	 Figure 14.2	Calibration	
curve	for	a	thermocouple
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14.2 Tem
perature scales

14
mercury-in-glass thermometer, the thermometric substance is mercury and the 
thermometric property is the length of the mercury thread in the capillary tube of 
the thermometer.

Remember that temperature measures the degree of ‘hotness’ of a body. It does not 
measure the amount of thermal energy (heat energy).

Each type of thermometer can be used to establish its own temperature scale.  
To do this, the fact that substances change state (from solid to liquid, or from liquid 
to gas) at fixed temperatures is used to define reference temperatures, which are 
called fixed points. By taking the value of the thermometric property at two fixed 
points, and dividing the range of values into a number of equal steps (or degrees), we 
can set up what is called an empirical scale of temperature for that thermometer. 
(‘Empirical’ means ‘derived by experiment’.) If the fixed points are the melting point 
of ice (the ice point) and the temperature of steam above water boiling at normal 
atmospheric pressure (the steam point), and if we choose to have one hundred equal 
degrees between the temperatures corresponding to these fixed points, taken as 0 
degrees and 100 degrees respectively, we arrive at the empirical centigrade scale of 
temperature for that thermometer. If the values of the thermometric property P are Pi 
and Ps at the ice- and steam-points respectively, and if the property has the value Pθ 
at an unknown temperature θ, the unknown temperature is given by

θ = 
100 (Pθ − Pi)

(Ps − Pi)

on the empirical centigrade scale of this particular thermometer. This equation is 
illustrated in graphical form in Figure 14.3.

It is important to realise that the choice of a different thermometric substance 
and thermometric property would lead to a different centigrade scale. Agreement 
between scales occurs only at the two fixed points. This happens because the 
property may not vary linearly with temperature.

This situation, with temperature values depending on the type of thermometer on  
which they are measured, is clearly unsatisfactory for scientific purposes. It is found  
that the differences between empirical scales are small in the case of thermometers 
based on gases as thermometric substances. In the constant-volume gas thermometer 
(Figure 14.4), the pressure of a fixed volume of gas (measured by the height 
difference h) is used as the thermometric property.

pr
op

er
ty

temperature/°C

Ps

Pq

Pi

0 q 100

▲	 Figure 14.3	Empirical	centigrade	scale

gas

h

▲	 Figure 14.4	Constant-volume	
gas	thermometer
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Thermodynamic	temperature
We can see from the idea of extrapolating the pressure–temperature graph for a constant-
volume gas thermometer (Figure 14.5) and Figure 15.2 (page 255) that there seems to be 
a natural zero of temperature, absolute zero. This is used as one of the fixed points of the 
thermodynamic temperature scale. The thermodynamic temperature scale starts with 
zero at absolute zero (–273.15 °C). We shall see in Topic 15.2 that the thermodynamic 
temperature scale is based on the theoretical behaviour of a so-called ideal gas.

EXTENSION

The upper fixed point is taken as the ‘triple point’ of water – the temperature at which 
ice, water and water vapour are in equilibrium. This is found to be less dependent on 
environmental conditions, such as pressure, than the ice-point. The thermodynamic 
temperature of the triple point of water is taken as 273.16 units, by international 
agreement. This defines the kelvin (symbol K), the unit of thermodynamic temperature.

One kelvin is the fraction 1/273.16 of the thermodynamic temperature of the triple 
point of water.

Since the variation with temperature of the property of a substance is not used when 
defining thermodynamic temperature, then thermodynamic temperature (kelvin 
temperature) does not depend on the property of a particular substance.

Thus, if a constant-volume gas thermometer gives a pressure reading of ptr at the 
triple point, and a pressure reading of p at an unknown temperature T, the unknown 
temperature (in K) is given by

T = 273.16(p/ptr)

The differences between the scales of different gas thermometers become even less as 
the pressures used are reduced. This is because the lower the pressure of a real gas, the 
more linear is the variation of pressure or volume. If we set up an empirical centigrade 
scale for a real gas in a constant-volume thermometer by obtaining the pressures of the 
gas at the ice-point (0 °C) and the steam-point (100 °C) we can extrapolate the graph of 
pressure p against the centigrade temperature θ to find the temperature at which the 
pressure of the gas would become zero. This is shown in Figure 14.5.

p

0 100–273 q /°C

▲	 Figure 14.5	Graph	of p	against	θ	for	constant-volume	gas	thermometer

The extrapolated temperature will be found to be close to –273 degrees on the 
empirical centigrade constant-volume gas thermometer scale. If the experiment is 
repeated with lower and lower pressures of gas in the thermometer, the extrapolated 
temperature tends to a value of –273.15 degrees. This temperature is the lowest 
theoretically possible temperature and is known as absolute zero. It does not 
depend on the properties of any particular substance. At absolute zero, molecules 
would have zero kinetic energy.
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14
The	Celsius	scale
Why choose 273.16 as the number of units between the two fixed points of this scale? 
The reason is that this number will give 100 K between the ice- and steam-points, 
allowing agreement between the thermodynamic temperature scale and a centigrade 
scale based on the pressure of an ideal gas. The ideal-gas centigrade scale is based on 
experiments with real gases at decreasing pressures. This agreement is based on a 
slightly awkward linking up of the theoretical thermodynamic scale and the empirical 
constant-volume gas thermometer scale. To avoid this complication, a new scale, the 
Celsius scale, was defined by international agreement.

The unit of temperature on the Celsius scale is the degree Celsius (°C), which is 
exactly equal to the kelvin.

The equation linking temperature θ on the Celsius scale and thermodynamic 
temperature T is

θ/°C = T/K – 273.15 or T/K = θ/°C + 273.15

In this equation, θ is measured in °C and T in K. Note that the degree sign ° always 
appears with the Celsius symbol, but it is never used with the kelvin symbol K.

WORKED EXAMPLE 14A

The temperature of the liquid is measured as 35 °C. What is the temperature, to 
3 significant figures, on the thermodynamic (kelvin) scale of temperature?

Answer
We use the equation T/K = θ/°C + 273.15 but to 3 significant figures, this becomes

T/K = θ/°C + 273

= 35 + 273 = 308 K

1 A block of metal is heated so that its temperature rises from 27°C to 150°C.

 Determine, to 3 significant figures on the thermodynamic (kelvin) scale of temperature:

a the temperature of 150°C

b the temperature rise of the block.

Question
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14.3 Specific heat capacity and specific latent heat
In this section, we will be looking at the effect of heating on temperature.

Specific	heat	capacity
When a solid, a liquid or a gas is heated, its temperature rises. Plotting a graph of 
thermal energy supplied against temperature rise (Figure 14.6), it is seen that the 
temperature rise Δθ is proportional to the thermal energy ΔQ supplied, for a particular 
mass of a particular substance.

ΔQ ∝ Δθ

Similarly, the thermal energy required to produce a particular temperature rise is 
proportional to the mass m of the substance being heated (Figure 14.7, overleaf).

ΔQ ∝ m
▲	 Figure 14.6
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Combining these two relations gives

ΔQ ∝ mΔθ

or

ΔQ = mcΔθ

where c is the constant of proportionality known as the specific heat capacity of the 
substance. In this case, specific means per unit mass.

The numerical value of the specific heat capacity of a substance is the quantity of 
thermal energy required to raise the temperature of unit mass of the substance by 
one degree.

The SI unit of specific heat capacity is J kg–1 K–1. The unit of specific heat capacity is 
not the joule and this is why, in the definition of specific heat capacity, it is important 
to make reference to the numerical value. Specific heat capacity is different for different 
substances. Some values are given in Table 14.1.

The specific heat capacity of a substance is the thermal energy per unit mass required 
to raise the temperature of the substance by one degree. 

material specific heat capacity /J kg–1 K–1

ethanol 2500
glycerol 2420
ice 2100
mercury  140
water 4200
aluminium  913
copper  390
glass  640

▲	 Table 14.1	Values	of	specific	heat	capacity	for	different	materials

It should be noted that, for relatively small changes in temperature, specific heat 
capacity is approximately constant. However, over a wide range of temperature, the 
value for a substance may vary considerably (Figure 14.8). Unless stated otherwise, 
specific heat capacity is assumed to be constant.
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▲	 Figure 14.7
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▲	 Figure 14.8
WORKED EXAMPLE 14B

Calculate the quantity of thermal energy required to raise the temperature of a mass of 
590 g of copper from 25 °C to 90 °C. The specific heat capacity of copper is 390 J kg–1 K–1.

Answer

thermal energy required = m × c × Δθ

= 0.59 × 390 × (90 – 25)

= 1.5 × 104 J

2 Calculate the thermal energy gained or lost for the following temperature changes. 
Use Table 14.1 to obtain values for specific heat capacity.

a 1.4 kg of aluminium heated from 20 °C to 85 °C

b 2.3 g of ice at 0 °C cooled to –18° C.

3 Calculate the specific heat capacity of water given that 0.25 MJ of energy are required 
to raise the temperature of a mass of 690 g of water by 86 K.

Questions
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14.3 Specific heat capacity and specific latent heat

14
Specific	latent	heat
Figure 14.9 illustrates how the temperature of a mass of ice varies with time when it is 
heated at a constant rate to become steam.

At times when the substance is changing phase (ice to water or water to steam), thermal 
energy (heat) is being supplied without any change of temperature. Because the heat 
transferred does not change the temperature of the substance as it changes state, it is 
said to be latent (i.e. hidden). The latent heat required to melt (fuse) a solid is known as 
latent heat of fusion.
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▲	 Figure 14.9
The numerical value of the specific latent heat of fusion is the quantity of thermal 
energy required to convert unit mass of solid to liquid without any change in 
temperature.

The numerical value of the specific latent heat of vaporisation is the quantity 
of thermal energy required to convert unit mass of liquid to vapour without any 
change in temperature.

ΔQ = mLf

Note: The meaning of ‘fusion’ is melting.

The SI unit of specific latent heat of fusion is J kg–1. For a substance with latent heat of 
fusion Lf, the quantity of thermal energy ΔQ required to fuse (melt) a mass m of solid is 
given by

The latent heat required to vaporise a liquid without any change of temperature is 
referred to as latent heat of vaporisation.

The SI unit of specific latent heat of vaporisation is the same as that for fusion, i.e. J kg–1. 
For a substance with latent heat of vaporisation Lv, the quantity of thermal energy ΔQ 
required to vaporise a mass m of liquid is given by

When a vapour condenses (vapour becomes liquid), the latent heat of vaporisation is 
released. Similarly, when a liquid solidifies (liquid becomes solid), the latent heat of 
fusion is released. Some values of specific latent heat of fusion and of vaporisation are 
given in Table 14.2.

The specific latent heat of a substance is the quantity of heat per unit mass required to 
change the state of a substance at constant temperature.

material
specific latent heat  
of fusion kJ kg–1

specific latent heat of 
vaporisation kJ kg–1

ice/water 330 2260

ethanol 108  840

copper 205 4840

sulfur  38.1

▲	 Table 14.2	Values	of	specific	latent	heat

Note that the unit kJ kg–1 is numerically equal to the unit J g–1.

It can be seen that, for the same mass, specific latent heat of vaporisation is significantly 
greater than specific latent heat of fusion. For fusion (melting), the thermal energy 
enables the strong forces that make the solid rigid between atoms/molecules to be 
overcome. Forces between atoms/molecules still exist in the liquid and volume does not 

ΔQ = mLv
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change significantly. In the case of vaporisation, the atoms/molecules are completely 
separated so that forces between atoms/molecules are negligible, thus a greater amount 
of energy is required to overcome the forces that hold the liquid together. Furthermore, 
volume increases significantly (1 cm3 of liquid water becomes approximately 1800 cm3 

of steam at atmospheric pressure), resulting in additional thermal energy transfer to do 
work against the atmosphere.

WORKED EXAMPLE 14C

Use the information given in Table 14.2 to determine the thermal energy required to 
melt 78 g of sulfur at its normal melting point.

Answer

heat energy required = m × Lf

= 0.078 × 38.1

= 3.0 kJ = 3000 J

4 Where appropriate, use the information given in Table 14.2.

a Calculate the thermal energy required to:

i melt 76 g of ice at 0 °C

ii evaporate 76 g of water at 100 °C.

b Using your answers to a, determine how many times more energy is required to 
evaporate a mass of water than to melt the same mass of ice.

Exchanges	of	thermal	energy
When a hot object and a cold object come into contact, thermal energy passes from the 
hot object to the cold one so that the two objects reach the same temperature. The law 
of conservation of energy applies in that the thermal energy gained by the cold object 
is equal to the thermal energy lost by the hot object. This does, of course, assume that 
no energy is lost to the surroundings. This simplification enables temperatures to be 
calculated.

Question

WORKED EXAMPLE 14D

1 A mass of 0.30 kg of water at 95 °C is mixed with 0.50 kg of water at 20 °C. 
Calculate the final temperature of the water, given that the specific heat capacity 
of water is 4200 J kg–1 K–1.

2 A mass of 15 g of ice at 0 °C is placed in a drink of mass 240 g at 25 °C. Calculate 
the final temperature of the drink, given that the specific latent heat of fusion 
of ice is 334 kJ kg–1 and that the specific heat capacity of water and the drink is 
4.2 kJ kg–1 K–1.

Answers
1 Hint: Always start by writing out a word equation containing all the gains and 

losses of heat energy.
 heat energy lost by hot water = heat energy gained by cold water
 (m × c × θ1) = (M × c × θ2)
 0.30 × 4200 × (95 – θ) = 0.50 × 4200 × (θ – 20)
 where θ is the final temperature of the water.
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Use the data in Table 14.1 and in Table 14.2 where appropriate.

5 A lump of copper of mass 120 g is heated in a gas flame. It is then transferred to a 
mass of 450 g of water, initially at 20 °C. The final temperature of the copper and the 
water is 31 °C. Calculate the temperature of the gas flame.

6 Steam at 100 °C is passed into a mass of 450 g of water, initially at 25 °C. The steam 
condenses. Calculate the mass of steam required to raise the temperature of the water 
to 80 °C.

SUMMARY

» Thermal energy is transferred from a region of 
high temperature to one of lower temperature.

» Two regions that are at the same temperature are 
said to be in thermal equilibrium.

» A physical property that varies with temperature 
may be used to measure temperature. These 
properties include the density of a liquid, volume 
of a gas, resistance of a metal, e.m.f. of a 
thermocouple.

» Thermodynamic (kelvin or absolute) temperature 
does not depend on the property of any particular 
substance.

» Celsius scale: θ = T – 273.15, where θ is the Celsius 
temperature (in °C) and T is the thermodynamic 
temperature (in K).

» The absolute zero of temperature is the lowest 
possible temperature and is zero kelvin.

» Melting, boiling and evaporation are all examples 
of changes of phase (solid to liquid, and liquid to 
vapour).

» All these changes of phase require an input of 
energy (latent heat) to overcome the interatomic 
forces.

» Specific heat capacity is the thermal energy per 
unit mass required to raise the temperature of the 
substance by one degree.

» The SI unit of specific heat capacity is J kg–1 K–1.
» The thermal energy ΔQ required to raise the 

temperature of a mass m of substance of specific 
heat capacity c by an amount Δθ is given by the 
expression: ΔQ = mcΔθ.

» Specific latent heat of fusion is the quantity of 
thermal energy per unit mass required to convert 
mass of solid to liquid without any change in 
temperature.

» Specific latent heat of vaporisation is the quantity 
of thermal energy per unit mass required to 
convert mass of liquid to vapour without any 
change in temperature.

» When a substance of mass m changes its state the 
quantity of thermal energy required is given by 
ΔQ = mL where L is the appropriate specific latent 
heat.

» Specific latent heat has the SI unit of J kg–1.

 1260 × (95 – θ) = 2100 × (θ – 20)
 119 700 – 1260θ = 2100θ – 42 000
 161 700 = 3360θ
 θ = 48 °C
2 energy lost by drink = energy gained by melting ice + energy gained by ice water
 (m × c × Δθ1) = (M × Lf) + (M × c × Δθ2)
 0.240 × 4.2 × (25 – θ) = (0.015 × 334) + (0.015 × 4.2 × {θ – 0})
 where θ is the final temperature of the drink. Simplifying,
 θ = 19 °C

Questions
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END OF TOPIC QUESTIONS
In the following questions, use the data in Table 14.1 and in Table 14.2 where 
appropriate.
1 A piece of aluminium of mass 260 g is cooled in a freezer. It is then dropped into 

140 g of water at 5 °C, causing 4.0 g of water to freeze. Determine the temperature 
inside the freezer.

2 a A jet of steam at 100 °C is directed into a hole in a large block of ice. After the 
steam has been switched off, the condensed steam and the melted ice are both 
at 0 °C. The mass of water collected in the hole is 206 g. Calculate the mass of 
steam condensed.

b Suggest why a scald with steam is much more serious than one involving 
boiling water.

3 A kettle, rated at 2.8 kW, contains a mass of 465 g of water at a temperature of 24 °C.

 The kettle is switched on for a time of 2.5 minutes. During that time, 92% of the 
input energy is transferred to the water. Calculate the mass of water that is 
evaporated.

4 a Define specific latent heat. [2]
b The heater in an electric kettle has a power of 2.40 kW.
 When the water in the kettle is boiling at a steady rate, the mass of water 

evaporated in 2.0 minutes is 106 g.
 The specific latent heat of vaporisation of water is 2260 J g–1.
 Calculate the rate of loss of thermal energy to the surroundings of the kettle 

during the boiling process. [3]

Cambridge International AS and A Level Physics (9702) Paper 41 Q3 May/June 2012
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15.1 The m
ole

Ideal gases

A LEVEL

 15 

Learning outcomes
By the end of this topic, you will be able to:

15.1 The mole
1  understand that amount of substance is an  

SI base quantity with the base unit mol
2  use molar quantities where one mole of any 

substance is the amount containing a number 
of particles of that substance equal to the 
Avogadro constant NA

15.2 Equation of state
1  understand that a gas obeying pV α T, where T 

is the thermodynamic temperature, is known 
as an ideal gas

2  recall and use the equation of state for an ideal 
gas expressed as pV = nRT, where n = amount 
of substance (number of moles) and as pV = NkT, 
where N = number of molecules

3  recall that the Boltzmann constant k is given by 
k = R/NA

15.3 Kinetic theory of gases
1  state the basic assumptions of the kinetic 

theory of gases
2  explain how molecular movement causes the 

pressure exerted by a gas and derive and use 
the relationship pV = 13 Nm<c2>, where <c2> 
is the mean-square speed (a simple model 
considering one-dimensional collisions and 
then extending to three dimensions using 
1
3 <c2> = <c

x
2> is sufficient)

3  understand that the root-mean-square speed 
cr.m.s. is given by √<c2>

4  compare pV = 13 Nm<c2>, with pV = NkT to 

deduce that the average translational kinetic 

energy of a molecule is 3
2 kT

Starting points
★ All matter consists of atoms or groups of atoms called molecules.
★ The spacing of these atoms/molecules and the forces between them 

determine whether the matter is solid, liquid or gas.
★ In a gas, the forces between atoms or molecules are negligible. On average 

the particles are far apart and in rapid, random motion with kinetic energy 
that depends on temperature.

★ Gases have no fixed volume and no fixed shape.

15.1 The mole
In Topic 1, we saw that SI is founded on fundamental (base) quantities and their base 
units. These fundamental quantities used so far in the Cambridge International AS & 
A Level Physics course include mass, length, time, electric current and thermodynamic 
temperature.

One additional base quantity is amount of substance with the base unit mol.

The mole (abbreviated mol) is the amount of substance which contains 
6.02214076 × 1023 elementary entities, usually atoms or molecules but could also 
be ions or electrons.
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The numerical value of the Avogadro constant is usually given to three significant 
figures as 6.02 × 1023. Thus, NA = 6.02 × 1023 mol–1.

The mass of 1 mole of substance is known as the molar mass.

The Avogadro constant NA is the number of elementary entities in 1 mole of any 
substance.

WORKED EXAMPLE 15A

1 The molar mass of a sample of neon is 20.0 g. Calculate the number of atoms in a 
sample of 2.5 g of this neon.

2 A gas cylinder contains 1.51 × 1024 molecules of oxygen. The mass of 1 mol of 
oxygen atoms is 16.0 g.
a Determine the amount, in mol, of oxygen molecules.
b Determine the mass of oxygen present.

Answers
1 A mass of 20.0 g of the sample of neon contains the Avogadro number of atoms.
 So, 2.5 g contains 2.5/20.0 × 6.02 × 1023 = 7.53 × 1022 atoms.
2 a amount (mol) = number of particles/Avogadro constant

 = 1.51 × 1024/6.02 × 1023 = 2.51 mol
b mass = number of particles × mass of one particle

 = 2.51 × 32.0 (since 1 oxygen molecule contains 2 atoms)
 = 80.3 g

1 The mass of 1 mol of nitrogen atoms is 14.0 g. Determine:

a the mass, in kg, of 1 atom of nitrogen

b the number of molecules of nitrogen present in a cylinder containing 290 g 
nitrogen.

15.2 Equation of state
Experiments in the seventeenth and eighteenth centuries showed that the volume, 
pressure and temperature of a given sample of gas are all related.

For a given mass of gas, Robert Boyle (1627–91) found that the volume V of a gas is 
inversely proportional to its pressure p, provided that the temperature is held constant.

This relation is known as Boyle’s law.

Expressed mathematically

Question

p1V1 = p2V2

where p1 and V1 are the initial pressure and volume of the gas, and p2 and V2 are the 
final values after a change of pressure and volume is carried out for a fixed mass of gas 
at constant temperature.

The effect of temperature on the volume of a gas was investigated by the French 
scientist Jacques Charles (1746–1823). Charles found that the graph of volume V 
against temperature θ is a straight line (see Figure 15.1). Because gases liquefy when 
the temperature is reduced, experimental points could not be obtained below the 
liquefaction temperature. But if the graph was projected backwards, it was found that it 
cut the temperature axis at about –273°C.
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V

0 100 

q /°C
–273

▲ Figure 15.1 Graph of V against θ

The effect of temperature on the pressure of a gas was investigated by another 
Frenchman, Joseph Gay-Lussac (1778–1850).

The graph of pressure p against temperature θ is a straight line, which, if projected 
like the volume–temperature graph, also meets the temperature axis at about –273°C 
(Figure 15.2). This fact was used in Topic 14.2 to introduce the thermodynamic scale of 
temperature and the idea of the absolute zero of temperature.

p

0–273 100 

q /°C
▲ Figure 15.2 Graph of p against θ

If Celsius temperatures are converted to thermodynamic temperatures T, Charles’ results 
can be expressed as Charles’ law.

V1
T1

 = 
V2
T2

where V1 and T1 are the initial volume and temperature, and V2 and T2 are the final 
values. The pressure is constant.

The corresponding relation between pressure and thermodynamic temperature of 
a fixed mass of gas at constant volume is given by Gay-Lussac’s law, or the law of 
pressures. That is,

p
T

p
T

=   1

1

2

2

The volume is constant.

We can combine the three gas laws into a single relation between pressure p, volume V 
and thermodynamic temperature T for a fixed mass of gas. This relation is

pV ∝ T

or
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p V
T

p V
T

 = 1 1

1

2 2

2

Strictly speaking, the laws of Boyle, Charles and Gay-Lussac are not really laws, as their 
validity is restricted. They are accurate for real gases only if the pressure of the sample is 
not too great, and if the gas is well above its liquefaction temperature. However, they can 
be used to define an ‘ideal’ gas.

An ideal gas is one which obeys the equation of state pV ∝ T at all pressures p, 
volumes V and thermodynamic temperatures T.

Note that, when defining what is meant by an ideal gas, the temperature must be stated to be the 
thermodynamic temperature.

For approximate calculations, the ideal gas equation can be used with real gases if the 
gas is well above the temperature at which it would liquefy and the pressure is not high.

The laws relate to a fixed mass of gas. Another series of experiments could be carried 
out to find out how the volume of a gas, held at constant pressure and temperature, 
depends on the mass of gas present. It would be found that the volume is proportional 
to the mass. This would give the combined relation

pV ∝ mT

where m is the mass of gas, or

pV = AmT

where A is a constant of proportionality. However, this is not a very useful way of 
expressing the relation, as the constant A has different values for different gases.  
We need to find a way of including the quantity of gas. The way to do this is to express 
the fixed mass of gas in Boyle’s, Charles’ and Gay-Lussac’s laws in terms of the number 
of moles of gas present.

Combining the three gas laws and using the number n of moles of the gas, we have

pV ∝ nT

or, putting in a new constant of proportionality R,

pV = nRT

R is called the molar gas constant (sometimes called the universal gas constant, 
because it has the same value for all gases). It has the value 8.3 J K–1 mol–1.

The quantity n is the number of moles of gas and is a constant for a fixed mass of gas.

The equation pV = nRT is known as the universal gas equation or the equation of state 
for an ideal gas.

Sometimes the equation pV = nRT is expressed in the form

pV = NkT

where N is the number of molecules in the gas and k is a constant called the Boltzmann 
constant. The Boltzmann constant has the value 1.38 × 10–23 J K–1. Note that the molar gas 
constant R and the Boltzmann constant k are connected through the Avogadro constant NA.

k = R/NA
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2 The number of molecules per cubic metre of air at standard temperature and 
pressure is about 2.7 × 1025 m–3. What is the average separation of these molecules?

3 The mean mass of one mole of air (which is made up mainly of nitrogen, oxygen and 
argon) is 0.029 kg. What is the density of air at standard temperature and pressure, 
that is, 273 K and 1.01 × 105 Pa? (R = 8.31 J K–1 mol–1.)

4 The volume of a sample of gas is 3.2 × 10–2 m3 when the pressure is 8.6 × 104 Pa and 
the temperature is 27°C. How many moles of gas are there in the sample? How many 
molecules? What is the number of molecules per cubic metre? (R = 8.31 J K–1 mol–1.)

5 A sample of air has volume 30 × 10–6 m3 when the pressure is 4.0 × 105 Pa. The pressure 
is reduced to 1.5 × 105 Pa, without changing the temperature. What is the new volume?

6 A sample of gas, originally at standard temperature and pressure (273 K and  
1.01 × 105 Pa), has volume 4.5 × 10–5 m3 under these conditions. The pressure is 
increased to 5.87 × 105 Pa and the temperature rises to 34°C. Calculate the new volume.

15.3 Kinetic theory of gases
One of the aims of Physics is to describe and explain the behaviour of various systems. 
For mechanical systems, this involves calculating the motion of the parts of the system in 
detail. For example, we have already seen how to predict the motion of a stone thrown in 
a uniform gravitational field. Using the equations of uniformly accelerated motion, it is not 
too difficult to calculate the position and velocity of the stone at any time (Topic 2.1).

However, there are some cases in which it is quite impossible to describe what happens 
to each component of the system.

This sort of problem arises if we try to describe the properties of a gas in terms of the 
motion of each of its molecules. The difficulty is that the numbers are so large.  
One cubic metre of atmospheric air contains about 3 × 1025 molecules. There is no 
practical method of determining the position and velocity of every single molecule at a 

WORKED EXAMPLE 15B

1 Calculate the volume occupied by 1 mole of air at 
standard temperature and pressure (273 K and  
1.01 × 105 Pa), taking R as 8.31 J K–1 mol–1 for air.

2 Calculate the number of molecules per cubic metre 
of air at standard temperature and pressure.

3 A syringe contains 25 × 10–6 m3 of helium gas at a 
temperature of 20°C and a pressure of 5.0 × 104 Pa. 
The temperature is increased to 400°C and the 
pressure on the syringe is increased to 2.4 × 105 Pa. 
Find the new volume of gas in the syringe.

Answers
1 Since pV = nRT, V = nRT/p. Substituting the values  

n = 1 mol, R = 8.31 J K–1 mol–1, T = 273 K and  
p = 1.01 × 105 Pa, V = (1 × 8.31 × 273)/1.01 × 105  
  = 2.25 × 10–2 m3.

2 We have just shown that the volume occupied 
by one mole of air at standard temperature and 
pressure is 2.25 × 10–2 m3. One mole of air contains 
NA molecules, where NA is the Avogadro constant 

(6.02 × 1023 mol–1). Thus the number of molecules 
per cubic metre of air is 6.02 × 1023/2.25 × 10–2 
= 2.68 × 1025 m–3.

 Note: It is useful to remember these two quantities, 
the molar volume of a gas and the number density of 
molecules in it. They give an idea of the relatively 
small volume occupied by a mole of gas at standard 
temperature and pressure (a cube of side about 
28 cm), and the enormous number of molecules in 
every cubic metre of a gas under these conditions. 
See also question 2 below.

3 Assuming the gas to be ideal, then the gas equation 
is given as pV/T = constant. This is written in the 
form p1V1/T1 = p2V2/T2 and re-arranged as 

 V2 = p1V1T2/p2T1. Substituting the values 
 p1 = 5.0 × 104 Pa, V1 = 25 × 10–6 m3, T2 = 673 K, 
 p2 = 2.4 × 105 Pa, T1 = 293 K (again note that 

temperatures are converted from °C to K),
 V2 = (5.0 × 104 × 25 × 10–6 ×  673)/(2.4 × 105 × 293) 

      = 12 × 10–6 m3.

Questions
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given time. Even the most advanced computer would be unable to handle the calculation 
of the motions of such a very large number of molecules.

In some ways, the fact that the gas is made up of such an enormous number of molecules 
is an advantage. It means that we can give a large-scale description of the gas in terms 
of only a few variables. These variables are quantities such as pressure p, volume V and 
thermodynamic temperature T. They tell us about average conditions in the gas, instead 
of describing the behaviour of each molecule. We have already met the experimental laws 
relating to these quantities. Our aim now is to relate the ideal gas equation, which deals 
with the large-scale (macroscopic) quantities p, V and T, to the small-scale (microscopic) 
behaviour of the particles of the gas. We shall do this by taking averages over the very 
large numbers of molecules involved. We shall find that we can derive the equation 
for Boyle’s law when we make very simple assumptions about the atoms or molecules 
which make up the gas. This is the kinetic theory of an ideal gas. We shall also see that 
temperature can be related to the kinetic energy of the molecules of the gas.

The kinetic theory
An explanation of how a gas exerts a pressure was developed by Robert Boyle in the 
seventeenth century and, in greater detail, by Daniel Bernoulli in the eighteenth century. 
The basic idea was that the gas consists of atoms or molecules randomly moving about 
at great speed (later visualised by Robert Brown).

When a gas molecule hits the wall of its containing vessel, it rebounds. There is a change 
in momentum of the molecule and it experiences an impulse. By Newton’s third law, the 
wall of the vessel also experiences an impulse. There are many collisions per unit time 
of molecules with the wall and all these collisions and the associated impulses average 
out to give a constant force on the wall. Force per unit area is pressure.

We shall make some simplifying assumptions about the molecules of the gas.  
The assumptions of the kinetic theory of an ideal gas are:

» All molecules behave as identical, hard, perfectly elastic spheres.
» The volume of the molecules is negligible compared with the volume of the 

containing vessel.
» There are no forces of attraction or repulsion between molecules.
» There are many molecules, all moving randomly.

y

x

z

O

cx

L

▲ Figure 15.3 A gas molecule in a cubic 
container

The number of molecules must be very large, so that average behaviour can be considered.

Suppose that the container is a cube of side L (Figure 15.3). The motion of each molecule 
can be resolved into x-, y- and z-components. For convenience we shall take the x-, y- 
and z-directions to be parallel to the edges of the cube.
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Consider one molecule. Let the x-component of its velocity be cx. When this molecule 
collides with the wall of the container perpendicular to the x-axis, the x-component of 
velocity will be exactly reversed, because (from our assumptions) the collision of the 
molecule with the wall is perfectly elastic. The time taken for the molecule to move 
between the two walls perpendicular to the x-axis is L/cx. To make the round trip from 
one wall to the opposite one and back again takes 2L/cx. This is the time between one 
collision of the molecule with a wall and its next collision with the same wall.

When the molecule strikes a wall, the component of velocity is reversed in direction, from 
cx to –cx. Thus, during each collision with a wall, the x-component of momentum changes by

Δpx = 2mcx

where m is the mass of the molecule. The rate at which this molecule changes 
momentum at the wall is

change of momentum/time between collisions = 2mcx/(2L/cx) = mcx
2/L

From Newton’s second law, this rate of change of momentum is the average force exerted 
by this particular molecule on the wall through its collisions with the wall. If there are N 
molecules in the container, the total force is Nmcx

2/L. Pressure is force divided by area, 
and the area of the wall is L2, so the pressure exerted by all N molecules on this wall is 
Nmcx

2/L3.

The volume V of the container is L3, giving us

p = Nmcx
2/V

as an expression for the pressure. This expression relates only to the x-component 
of velocity of the molecules. For a molecule moving with velocity c, an extension of 
Pythagoras’ theorem to three dimensions gives the relation between c and the three 
components of velocity cx, cy and cz as c2 = cx

2 + cy
2 + cz

2. Because we are dealing with a 
large number of molecules in random motion, the average value of the component in the 
x-direction will be the same as for those in the y-direction or in the z-direction. Therefore, 
taking the averages, <cx

2 > = <cy
2 > = <cz

2 > and <cx
2 > = 1/3 <c2 >. The notation <cx

2 >. 
means the average value of cx

2. Our expression for the pressure can now be written as

pV = 1
3 Nm<c2 >

Since N is the total number of molecules in the container, then Nm is the total mass of 
gas and Nm/V is the density ρ of the gas. So,

p = 1
3  ρ<c2>

Since the average kinetic energy of a molecule is

〈Ek 〉 = 1
2  m<c2>

there seems to be a link between our kinetic theory equation for pV and energy. We can 
find this relation by re-writing the equation pV = 1

3 Nm<c2> as

pV = 2
3N <   >1

2
2
3pV m c N E = 2

3
N = k

2( ) ( )  
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We have already stated the ideal gas equation in the forms pV = nRT = NkT. Indeed, even 
real gases obey this law reasonably well under normal conditions. If our kinetic theory 
model and the subsequent theoretical derivation of the equation are correct, we can 
bring together the two equations for pV. This will allow us to relate the temperature of a 
gas to the average kinetic energy of its molecules.

( ) ( )pV N m c N E = =  k
2 < >  2

3
1
2

2
3 <Ek> = NkT

and 

<Ek> ( )E m c kTk  = = 2 < >1
2

3
2

This is an important result. We have derived a relation between the average kinetic 
energy of a molecule in a gas and the thermodynamic temperature of the gas. This will 
allow us to obtain an idea of the average speed of the molecules. Since

<Ek>( )E m c kTk  = = 2 < >1
2

3
2

we have

<c2> = 
kT

m

3

and

√<c2> = √ (3kT
m )

The quantity √<c2> is called the root-mean-square speed or r.m.s. speed of the molecules. 
It is not exactly equal to the average speed of the molecules, but is often taken as being so. 
The average speed is about 0.92 of the root-mean-square speed. The difference between the 
r.m.s. speed and the average speed is highlighted in Worked Example 15C.

Note that the r.m.s. speed is proportional to the square root of the thermodynamic 
temperature of the gas, and inversely proportional to the square root of the mass of the 
molecule. Thus, at a given temperature, less massive molecules move faster, on average, 
than more massive molecules. For a given gas, the higher the temperature, the faster the 
molecules move.

WORKED EXAMPLE 15C

 The speeds of seven molecules in a gas are numerically equal to 2, 4, 6, 8, 10, 12 and 
14 units. Determine the numerical values of:
a the mean speed <c>,
b the mean speed squared <c>2,
c the mean-square speed <c2>,
d the r.m.s. speed.

Answers
a <c> = (2 + 4 + 6 + 8 + 10 + 12 + 14)/7 = 8.0 units
b <c>2 = 82 = 64 units2

c <c2 > = (4 + 16 + 36 + 64 + 100 + 144 + 196)/7 = 80 units2

d r.m.s. speed = 8.9 units
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WORKED EXAMPLE 15D

Calculate the total kinetic energy of the molecules in one mole of an ideal gas at 
standard temperature (273 K).

Answer
We know that the average kinetic energy of one molecule is 3

2kT.

For one mole of molecules, that is NA molecules, the energy is

3
2NAkT = 3

2RT

Substituting the values R = 8.3 J K–1 mol–1 and T = 273 K, we have

Ek = 1.5 × 8.3 × 273 = 3400 J

WORKED EXAMPLE 15E

The mass of a nitrogen molecule is 4.6 × 10–26 kg. Determine the root-mean-square 
speed of the molecules in nitrogen gas at 27°C.

Answer
Since crms = √(3kT/m) we have

crms = √(3 × 1.38 × 10–23 × 300/4.6 × 10–26) = 520 m s–1

7 Determine the average kinetic energy of a molecule in an ideal gas at a temperature  
of 260°C.

8 Calculate the root-mean-square speed of the molecules in neon-20 gas at 50°C. 
Neon-20 gas may be assumed to be an ideal gas.

Questions

SUMMARY

» Amount of substance is an SI base quantity with 
the base unit of moles (mol).

» One mole of any substance contains a number of 
particles equal to the Avogadro constant.

» The pressure exerted by a gas on the walls of its 
container is caused by collisions of gas molecules 
with the walls.

» An ideal gas obeys the expression pV ∝ T where T 
is the thermodynamic temperature.

» The equation of state for an ideal gas relates 
the pressure p, volume V and thermodynamic 
temperature T of n moles of gas: pV = nRT where  
R = 8.3 J K–1 mol–1, the molar gas constant.

» For N molecules of gas: pV = NkT where  
k = 1.38 × 10–23 J K–1, the Boltzmann constant.

» The relation between R and k is k = R/NA where  
NA = 6.02 × 1023 mol–1, the Avogadro constant.

» The assumptions of the kinetic theory of gases are
– molecules behave as identical, hard, perfectly 

elastic spheres
– volume of the molecules is negligible compared 

with the volume of the containing vessel

– there are no forces of attraction or repulsion 
between molecules

– there are many molecules, all moving 
randomly.

» The mean-square speed of a large number of 
molecules is represented by < c2>.

» The kinetic theory equation: pV = 1
3 Nm< c2> can

 be derived using Newton’s laws of motion. 
A molecule’s change of momentum when it 
collides with the walls of its container gives rise to 
a force exerted by the wall and hence to pressure.

» Average kinetic energy of a molecule is directly 
proportional to thermodynamic temperature:  
< Ek> = 11

22 m < c2> = 33
22 kT.

» The root-mean-square speed or r.m.s. speed (crms) 
of a large number of molecules is given by √< c2>.

» Root-mean-square speed of molecules is found 
from crms = √(3kT/m).
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END OF TOPIC QUESTIONS

1 On a day when the atmospheric pressure is 102 kPa and the temperature is 8°C, 
the pressure in a car tyre is 190 kPa above atmospheric pressure. After a long 
journey the temperature of the air in the tyre rises to 29°C. Calculate the pressure 
above atmospheric of the air in the tyre at 29°C. Assume that the volume of the 
tyre remains constant.

2 A helium-filled balloon is released at ground level, where the temperature is 17°C 
and the pressure is 1.0 atmosphere. The balloon rises to a height of 2.5 km, where 
the pressure is 0.75 atmospheres and the temperature is 5°C. Calculate the ratio 
of the volume of the balloon at 2.5 km to that at ground level.

3 Estimate the root-mean-square speed of helium atoms near the surface of the 
Sun, where the temperature is about 6000 K. (Mass of helium atom = 6.6 × 10–27 kg.)

4 a An ideal gas is said to consist of molecules that are hard elastic identical 
spheres.

 State two further assumptions of the kinetic theory of gases. [2]
b The number of molecules per unit volume in an ideal gas is n.
 If it is assumed that all the molecules are moving with speed v, the pressure p 

exerted by the gas on the walls of the vessel is given by
 p = 1

3
 nmv2

 where m is the mass of one molecule.
 Explain the reasoning by which this expression is modified to give the formula

 p = 13 nm <c2> [1]
c The density of an ideal gas is 1.2 kg m–3 at a pressure of 1.0 × 105 Pa and a 

temperature of 207°C.
i  Calculate the root-mean-square (r.m.s.) speed of the molecules of the gas 

at 207°C. [3]
ii Calculate the mean-square speed of the molecules at 207°C [2]

Cambridge International AS and A Level Physics (9702) Paper 43 Q2 Oct/Nov 2015

5 a State what is meant by an ideal gas. [3]
b Two cylinders A and B are connected by a tube of negligible volume, as shown 

in Fig. 15.4.

cylinder A

2.5 � 103cm3

3.4 � 105Pa 1.6 � 103cm3

4.9 � 105Pa300 K

cylinder B

tap T

tube

▲ Figure 15.4
 Initially, tap T is closed. The cylinders contain an ideal gas at different 

pressures.
i Cylinder A has a constant volume of 2.5 × 103 cm3 and contains a gas at 

pressure 3.4 × 105 Pa and temperature of 300 K.
 Show that cylinder A contains 0.34 mol of gas. [1]
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End of topic questions

ii Cylinder B has a constant volume of 1.6 × 103 cm3 and contains  
0.20 mol of gas.

 When tap T is opened, the pressure of the gas in both cylinders is  
3.9 × 105 Pa.

 No thermal energy enters or leaves the gas.
 Determine the final temperature of the gas. [2]

Cambridge International AS and A Level Physics (9702) Paper 43 Q2 parts a and b  
May/June 2013

6 a The kinetic theory of gases is based on some simplifying assumptions.
 The molecules of the gas are assumed to behave as hard elastic identical spheres.
 State the assumption about idea gas molecules based on:

i the nature of their movement, [1]
ii their volume. [2]

b A cube of volume V contains N molecules of an ideal gas. Each molecule has a 
component cx of velocity normal to one side S of the cube, as shown in Fig. 15.5.

side S

cx

▲ Figure 15.5
 The pressure p of the gas due to the component cx of velocity is given by the 

expression
 pV = Nmcx

2

 where m is the mass of a molecule.
 Explain how the expression leads to the relation

 pV = 13 Nm<c2>
 where <c2> is the mean square speed of the molecules. [3]

c The molecules of an ideal gas have a root-mean-square (r.m.s.) speed of 
520 m s–1 at a temperature of 27°C.

 Calculate the r.m.s. speed of the molecules at a temperature of 100°C. [3]

Cambridge International AS and A Level Physics (9702) Paper 41 Q2 May/June 2012
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Thermodynamics	 16	

A LEVEL

Learning outcomes
By the end of this topic, you will be able to:

16.1 Internal energy
1  understand that internal energy is 

determined by the state of the system and 
that it can be expressed as the sum of a 
random distribution of kinetic and potential 
energies associated with the molecules of a 
system

2  relate a rise in temperature of an object to 
an increase in its internal energy

16.2 The first law of thermodynamics
1  recall and use w = pΔV for the work done 

when the volume of a gas changes at 
constant pressure and understand the 
difference between the work done by the  
gas and the work done on the gas

2  recall and use the first law of 
thermodynamics ΔU = q + w expressed in 
terms of the increase in internal energy,  
the heating of the system (energy transferred 
to the system by heating) and the work done 
on the system

Starting points
★ The differences between the three states of matter are due to the 

arrangement and spacing of the particles and their motion.
★ When work is done on a system energy is transferred.
★ The collisions of gas molecules with the walls of a container cause pressure.
★ Pressure = force/area.
★ Work done = force × distance moved by the force in the direction of the force.
★ For an ideal gas there are no intermolecular forces.
★ Potential energy is the energy stored in an object due to its position or shape.

16.1 Internal energy
We have seen that the molecules of a gas possess kinetic energy, and that for an ideal gas 
the mean kinetic energy of molecules is proportional to the thermodynamic temperature 
of the gas (Topic 15.3).

Not all molecules have the same kinetic energy, because they are moving with different 
speeds, but the sum of all the kinetic energies will be a constant if the gas is kept at a 
constant temperature.

For a real gas, the molecules also possess potential energy. Because the molecules exert 
forces on each other, at any instant there will be a certain potential energy associated 
with the positions that the molecules occupy in space. Because the molecules are moving, 
the potential energy of a given molecule will also vary. But at a given temperature the 
total potential energy of all of the molecules will remain constant. If the temperature 
changes, the total potential energy will also change. Furthermore, in a gas, the molecules 
collide with each other and will interchange kinetic energy during the collisions.

For a gas, the internal energy is defined as the sum of the potential energies and the 
kinetic energies of all the molecules.
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16
The sum of the potential energies and kinetic energies of all the molecules, owing 
to their random motion, is called the internal energy of the gas.

For an ideal gas there are no intermolecular forces so no potential energies.

The internal energy of an ideal gas is due only to the kinetic energies of its 
molecules.

It is important to realise that looking at a single molecule will give us very little 
information. In a gas, the kinetic energy will be changing all the time as the molecule 
collides with other gas molecules, and its potential energy is also changing as its position 
relative to the other molecules in the gas changes. This single molecule has a kinetic 
energy which is part of the very wide range of kinetic energies of the molecules of the gas.

nu
m

be
r 

of
m

ol
ec

ul
es

kinetic energy0

▲ Figure 16.1 Distribution of molecular kinetic energies

We say that there is a distribution of molecular kinetic energies. The distribution is 
illustrated in Figure 16.1. Similarly, there is a distribution of molecular potential energies. 
But by adding up the kinetic and potential energies of all the molecules in the gas, the 
random nature of the kinetic and potential energies of the single molecule is removed.

Internal energy for solids and liquids
The idea of internal energy can be extended to all states of matter. In a liquid, 
intermolecular forces are stronger as the molecules are closer together, so the potential 
energy contribution to internal energy becomes more significant. The kinetic energy 
contribution is still due to the random motion of the molecules in the liquid. In a solid, 
we can think of the solid as being made up of atoms or molecules which oscillate 
(vibrate) about equilibrium positions. Here, the potential energy contribution is 
caused by the strong binding (attractive) forces between atoms, and the kinetic energy 
contribution is due to the motion of the vibrating atoms.

Thus, the amount of internal energy within a system is determined by the state of the 
system.

The amount of internal energy is determined by the state of the system and can be 
expressed as the sum of a random distribution of kinetic and potential energies 
associated with the molecules of the system.

Thermal energy and temperature
The concept of internal energy is particularly useful as it helps us to distinguish between 
temperature and heat (thermal energy). Using an ideal gas as an example, temperature is 
a measure of the average (translational) kinetic energy of the molecules. It, therefore, does 
not depend on how many molecules are present in the gas. Internal energy (again for an 
ideal gas), however, is the total kinetic energy of the molecules, and clearly does depend on 
how many molecules there are. In general, a rise in temperature causes an increase in the 
kinetic energy of the molecules and, if the substance is not an ideal gas, a rise in potential 
energy of the molecules and hence an increase in the internal energy of the system.
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A rise in temperature of an object is related to an increase in the internal energy of 
the object.

16.2 The first law of thermodynamics
We have already met the law of conservation of energy (Topic 5.1). There, it was stated 
in the following form: energy can be neither created nor destroyed, it can only be 
transformed from one form to another. In this section we shall see how this conservation 
law may be re-stated in relation to terms such as work, thermal energy and internal 
energy. This will lead to an understanding of the first law of thermodynamics.

Thermodynamics is the study of processes involving the transfer of thermal energy 
and the doing of work. In thermodynamics, it is necessary to define the system under 
consideration. For example, the system may be an ideal gas in a cylinder fitted with a 
piston, or an electric heating coil in a container of liquid.

In Topic 5.1 we established the scientific meaning of work. Work is done when energy 
is transferred by mechanical means. We have seen (Topic 14) that heating is a transfer of 
energy due to a difference in temperature. Work and heating both involve a transfer of 
energy, but by different means.

Work done by an expanding gas
A building can be demolished with explosives (Figure 16.2). When the explosives are 
detonated, large quantities of gas at high pressure are produced. As the gas expands, it 
does work by breaking down the masonry. In this section we will derive an equation for 
the work done when a gas changes its volume.

Consider a gas contained in a cylinder by means of a frictionless piston of area A, 
as shown in Figure 16.3. The pressure p of the gas in the cylinder is equal to the 
atmospheric pressure outside the cylinder. This pressure may be thought to be constant.

gas area A

pressure p

pressure p

▲ Figure 16.3

Since pressure = force/area, the gas produces a force F on the piston given by

F = pA

When the gas expands at constant pressure, the piston moves outwards through a 
distance x. So,

work done by the gas = force × distance moved in the direction of the force

 w = pAx

However, Ax is the increase in volume ΔV of the gas. Hence

w = pΔV

When the volume of a gas changes at constant pressure,

work done = pressure × change in volume

▲ Figure 16.2 Explosives 
produce large quantities 
of high-pressure 
gas. When the gas 
expands, it does work 
in demolishing the 
building.
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Note that when the volume increases, the gas pushes against the external pressure and 
work is done by the gas. When the volume of the gas decreases, the external pressure 
forces a reduction in the volume of the gas and work is done on the gas.

Remember that the unit of work done is the joule (J). The pressure must be in pascals (Pa) 
or newtons per metre squared (N m−2) and the change in volume in metres cubed (m3).

WORKED EXAMPLE 16A

A sample of gas has a volume of 750 cm3. The gas expands at a constant pressure of 
1.4 × 105 Pa so that its volume becomes 900 cm3. Calculate the work done by the gas 
during the expansion.

Answer

 change in volume ΔV = (900 − 750) = 150 cm3 = 150 × 10−6 m3

 work done by gas = pΔV

 = (1.4 × 105) × (150 × 10−6) = 21 J

1 The volume of air in a tyre is 9.0 × 10−3 m3. Atmospheric pressure is 1.0 × 105 Pa. 
Calculate the work done against the atmosphere by the air when the tyre bursts and 
the air expands to a volume of 2.7 × 10−2 m3.

2 High-pressure gas in a spray-can has a volume of 250 cm3. The gas escapes into the 
atmosphere through a nozzle, so that its final volume is four times the volume of the 
can. Calculate the work done by the gas, given that atmospheric pressure is 1.0 × 105 Pa.

Changing internal energy
We know that the internal energy of a system is the total energy, kinetic and potential, 
of all the atoms and molecules in the system. For a system consisting of an ideal gas, the 
internal energy is simply the total kinetic energy of all the atoms or molecules of the gas. 
For such a system, we would expect the internal energy to increase if the gas was heated, 
or if work was done on it. In both cases we are adding energy to the system. By the law 
of conservation of energy, this energy cannot just disappear; it must be transformed to 
another type of energy. It appears as an increase in the internal energy of the gas; that 
is, the total kinetic energy of the molecules is increased. But if the total kinetic energy 
of the molecules increases, their average kinetic energy is also increased. Because the 
average kinetic energy is a measure of temperature, the addition of energy to the ideal 
gas shows up as an increase in its temperature. We can express this transformation of 
energy as an equation.

The increase in internal energy of a system is equal to the sum of the thermal 
energy added to the system and the work done on it.

This is a statement of the first law of thermodynamics.

The increase in internal energy is given the symbol ΔU, thermal energy added is 
represented by q and work done on the system by w. The equation is then

ΔU = q + w

Note the sign convention which has been adopted. A positive value of q means that 
thermal energy has been added to the system. A positive value of w means that work 
is done on the system. A positive value for ΔU means an increase in internal energy.

Questions
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If the system does work, then we show this by writing −w. If thermal energy leaves the 
system, we show this by writing −q. Take care! There is an alternative sign convention 
that takes the work done by the system as a positive quantity. To avoid confusion, write 
down the sign convention you are using every time you quote the first law.

Applying the first law of thermodynamics
Let’s see how the first law of thermodynamics applies to some simple processes.  
First, think about a change in the pressure and volume of a gas in a cylinder fitted with 
a piston. The cylinder and piston are insulated, so that no thermal energy can enter 
or leave the gas. (The thermodynamic name for such a change is an adiabatic change. 
That is, no thermal energy is allowed to enter or leave the system.) If no thermal energy 
enters or leaves the gas, q in the first law equation is zero. Thus

ΔU = 0 + w

If work is done on the gas by pushing the piston in, w is positive (remember the sign 
convention!) and ΔU will also be positive. That is, the internal energy increases and, 
because temperature is proportional to internal energy, the temperature of the gas 
rises. An adiabatic change can be achieved even if the cylinder and piston are not well 
insulated. Moving the piston rapidly, so that there is no time for thermal energy to 
enter or leave, is just as effective. You will have noticed that a cycle pump gets hot as 
a result of brisk pumping. This is because the gas in the pump is being compressed 
adiabatically. Work is being done on the gas, the pump strokes are too rapid for the 
thermal energy to escape, and the internal energy, and hence the temperature, increases. 
Another example is the diesel engine, where air in the cylinder is compressed so rapidly 
that the temperature rises to a point that, when fuel is injected into the cylinder, it is 
above its ignition temperature.

Now think about an electric kettle containing water. Here the element provides thermal 
energy to the system. The quantity q in the first law equation is positive (the sign 
convention is ‘thermal energy added, q positive’). No mechanical work is done on or by 
the water, so w in the first law equation is zero. Thus

ΔU = q + 0

The fact that q is positive means that ΔU is also positive. Internal energy, and hence 
temperature, increases.

WORKED EXAMPLE 16B

250 J of thermal energy is added to a system, which does 100 J of work. Find the 
change in internal energy of the system.

Answer
We use the first law of thermodynamics in the form ΔU = q + w with the sign 
convention that q is positive if energy is supplied to the system by heating and w is 
positive if work is done on the system. Here q = 250 J and w = −100 J (the system is 
doing the work, hence the minus sign). Therefore, ΔU = 250 − 100 = 150 J.  
This change in internal energy is an increase.

3 An isothermal change is one which takes place at constant temperature. Explain 
why, in any isothermal change, the change in internal energy is zero. In such a 
change, 350 J of thermal energy is added to a system. How much work is done on or 
by the system?

Question
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Internal energy during changes of state
When a substance changes from solid to liquid, intermolecular bonds are broken, 
thus increasing the potential energy component of the internal energy. During the 
melting process, the temperature does not change, and therefore the kinetic energy of 
the molecules does not change. Most substances expand on melting, and thus external 
work is done. By the first law, thermal energy must be supplied to the system, and this 
thermal energy is the latent heat of fusion.

Similarly, when a substance changes from liquid to gas, by boiling or evaporation, 
temperature does not change so there is no change in the kinetic energies of the 
molecules. However the separation of the molecules is increased, thus increasing the 
potential energy component of the internal energy.

Volume changes associated with evaporation are much greater than those associated 
with melting. The external work done is much greater during vaporisation, and thus 
latent heat of vaporisation is much greater than latent heat of fusion.

WORKED EXAMPLE 16C

 The specific latent heat of vaporisation of a liquid is 
2300 J g−1. When 1.0 g of the liquid evaporates, its 
volume increases by 1600 cm3 against the atmospheric 
pressure of 1.0 × 105 Pa.
 Determine, for the evaporation of 1.0 g of the liquid:
a the work done against the atmosphere
b the increase in internal energy.

Answers
 a work done = pΔV

  = 1.0 × 105 × 1600 × 10−6 = 160 J
 b increase in internal energy, ΔU = q + w

   ΔU = 2300 − 160 
       = 2140 J

SUMMARY

» The internal energy of a system is the sum of 
the random kinetic and potential energies of the 
molecules in the system.

» For an ideal gas, the internal energy is the total 
kinetic energy of random motion of the molecules.

» Internal energy is a measure of the temperature of 
the system.

» The work done w by a gas when its volume 
changes ΔV at constant pressure p is w = pΔV.

» The first law of thermodynamics expresses the 
law of conservation of energy. The increase in the 
internal energy ΔU of a system is equal to the sum 
of the energy transferred to the system by heating 
q and the work w done on it:

 ΔU = q + w
 (Sign convention: positive q, energy is added to the 

system by heating; positive w, work is done on the 
system; positive ΔU, increase in internal energy.)

END OF TOPIC QUESTIONS

1 An ideal gas expands isothermally, doing 250 J of work. What is the change in 
internal energy? How much thermal energy is absorbed in the process?

2 50 J of thermal energy is supplied to a fixed mass of gas in a cylinder. The gas 
expands, doing 20 J of work. Calculate the change in internal energy of the gas.

3 When water boils at an atmospheric pressure of 101 kPa, 1.00 cm3 of liquid 
becomes 1560 cm3 of steam. Calculate the work done against the atmosphere 
when a saucepan containing 45 cm3 of water is allowed to boil dry.
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4	 a	 i	 State the basic assumption of the kinetic theory of gases that leads  

to the conclusion that the potential energy between the atoms of an  
ideal gas is zero. [1]

ii State what is meant by the internal energy of a substance. [2]
iii	 Explain why an increase in internal energy of an ideal gas is directly  

related to a rise in temperature of the gas. [2]
b A fixed mass of an ideal gas undergoes a cycle PQRP of changes as shown  

in Fig. 16.4.
i State the change in internal energy of the gas during one complete  

cycle PQRP. [1]
ii Calculate the work done on the gas during the change from P to Q. [2]
iii Some energy changes during the cycle PQRP are shown in Fig. 16.5.

5 10 15 20 25 30

2

4

6

8

10

P

Q R

0

vo
lu

m
e/

10
–4

 m
3

pressure /105 Pa

▲	 Figure	16.4

change work done on gas/J heating supplied to 
gas/J

increase in internal 
energy/J

P → Q ………………… −600 …………………

Q → R 0 +720 …………………

R → P ………………… +480 …………………

▲	 Figure	16.5

Complete a copy of Fig. 16.5 to show all of the energy changes. [3]

Cambridge International AS and A Level Physics (9702) Paper 42 Q2 Oct/Nov 2010
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End of topic questions

5 a The first law of thermodynamics can be represented by the expression
 ΔU = q + w
 State what is meant by the symbols in the expression. [2]
b A fixed mass of an ideal gas undergoes a cycle ABCA of changes, as shown  

in Fig. 16.6.
i During the change from A to B, the energy supplied to the gas by heating 

is 442 J. Use the first law of thermodynamics to show that the internal 
energy of the gas increases by 265 J. [2]

ii During the change from B to C, the internal energy of the gas decreases 
by 313 J. By considering molecular energy, state and explain qualitatively 
the change, if any, in the temperature of the gas. [3]

iii For the change from C to A, use the data in b i and b ii to calculate the 
change in internal energy. [1]

iv The temperature of the gas at point A is 227°C. Calculate the number of 
molecules in the fixed mass of the gas. [2]

Cambridge International AS and A Level Physics (9702) Paper 42 Q2 Feb/Mar 2017

6 a State what is meant by specific latent heat. [2]
b A beaker of boiling water is placed on the pan of a balance, as illustrated  

in Fig. 16.7.

heater

balance
pan

boiling
water

d.c. supply

A

V

▲ Figure 16.7

The water is maintained at its boiling point by means of a heater. The change M 
in the balance reading in 300 s is determined for two different input powers to 
the heater. The results are shown in Fig. 16.8.

voltmeter 
reading/V ammeter reading/A M/g

11.5 5.2 5.0

14.2 6.4 9.1

▲ Figure 16.8

i Energy is supplied continuously by the heater. State where, in this 
experiment:
1 external work is done,
2 internal energy increases. Explain your answer. [3]

ii Use the data in Fig. 16.8 to determine the specific latent heat of vaporisation 
of water. [3]

Cambridge International AS and A Level Physics (9702) Paper 42 Q2 Oct/Nov 2017
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▲ Figure 16.6
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	17	 Oscillations

17.1 Simple harmonic oscillations
Some movements involve repetitive to-and-fro motion, such as a pendulum, the beating 
of a heart, the motion of a child on a swing and the vibrations of a guitar string. 
Another example would be a mass bouncing up and down on a spring, as illustrated in 
Figure 17.1. One complete movement from the starting or rest position, move up, then 
down and finally back up to the rest position, is known as an oscillation.

The time taken for one complete oscillation or vibration is referred to as the period T 
of the oscillation.

The oscillations repeat themselves.

The number of oscillations or vibrations per unit time is the frequency f.▲	 Figure 17.1	Oscillation	
of	a	mass	on	a	spring

equilibrium
position

one
complete
oscillation

amplitude

amplitude

Learning outcomes
By	the	end	of	this	topic,	you	will	be	able	to:

17.1 Simple harmonic oscillations
1	 understand	and	use	the	terms	displacement,	

amplitude,	period,	frequency,	angular	
frequency	and	phase	difference	in	the	
context	of	oscillations,	and	express	the	
period	in	terms	of	both	frequency	and	
angular	frequency

2	 understand	that	simple	harmonic	motion	
occurs	when	acceleration	is	proportional	to	
displacement	from	a	fixed	point	and	in	the	
opposite	direction

3	 use	a = –ω 2x	and	recall	and	use,	as	a	
solution	to	this	equation, x = x0 sin ω t

4	 use	the	equations	v = v0	cos ω t	and		
v = ±ω√(x0

2 – x2)
5	 analyse	and	interpret	graphical	illustrations	

of	the	variations	of	displacement,	velocity	
and	acceleration	for	simple	harmonic	motion

17.2 Energy in simple harmonic motion
1	 describe	the	interchange	between	kinetic	

and	potential	energy	during	simple	
harmonic	motion

2	 recall	and	use	E = 
1
2mω 2x0

2	for	the	total	
energy	of	a	system	undergoing	simple	
harmonic	motion

17.3 Damped and forced oscillations, resonance
1	 understand	that	a	resistive	force	acting	on	

an	oscillating	system	causes	damping
2	 understand	and	use	the	terms	light,	

critical	and	heavy	damping	and	sketch	
displacement–time	graphs	illustrating	these	
types	of	damping

3	 understand	that	resonance	involves	a	
maximum	amplitude	of	oscillations	and	that	
this	occurs	when	an	oscillating	system	is	
forced	to	oscillate	at	its	natural	frequency

Starting points
★	 An	object	that	moves	to-and-fro	continuously	is	said	to	be	oscillating	or	

vibrating.
★	 Oscillations	occur	in	many	different	systems	from	the	very	small	(e.g.	atoms)	

to	the	very	large	(e.g.	buildings).
★	 Waves	can	be	described	by	the	quantities	period,	frequency,	displacement	and	

amplitude.
★	 Angles	may	be	measured	in	radians	(rad):	2π	rad	=	360°.
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Frequency may be measured in hertz (Hz), where one hertz is one oscillation per  
second (1Hz = 1s−1). However, frequency may also be measured in min−1, hour−1, etc. 
For example, it would be appropriate to measure the frequency of the tides in h−1.

Since period T is the time for one oscillation then

frequency f = 1/T

As the mass oscillates, it moves from its rest or equilibrium position.

The distance from the equilibrium position is known as the displacement.

This is a vector quantity and therefore has magnitude and direction relative to the 
equilibrium position. Displacement may be on either side of the equilibrium position.

The amplitude (a scalar quantity) is the maximum displacement.

Some oscillations maintain a constant period even when the amplitude of the oscillation 
changes. Galileo discovered this fact for a pendulum. He timed the swings of an oil lamp 
in Pisa Cathedral, using his pulse as a measure of time. Oscillators that have a constant 
time period are called isochronous, and may be made use of in timing devices.  
For example, in quartz watches the oscillations of a small quartz crystal provide 
constant time intervals. Galileo’s experiment was not precise, and we now know that a 
pendulum swinging with a large amplitude is not isochronous.

The quantities period, frequency, displacement and amplitude should be familiar from 
our study of waves in Topic 7. It should not be a surprise to meet them again, as the idea 
of oscillations is vital to the understanding of waves.

Displacement–time graphs
It is possible to plot displacement–time graphs (as we did for waves in Topic 7.1) for 
oscillators. One experimental method is illustrated in Figure 17.2. A mass on a spring 
oscillates above a position sensor that is connected to a computer through a datalogging 
interface, causing a trace to appear on the monitor.

position sensor interface

▲ Figure 17.2 Apparatus for plotting displacement–time graphs for a mass on a spring

The graph describing the variation of displacement with time may have different shapes, 
depending on the oscillating system. For many oscillators the graph is approximately 
a sine (or cosine) curve. A sinusoidal displacement–time graph is a characteristic of an 
important type of oscillation called simple harmonic motion (s.h.m.). Oscillators which 
move in s.h.m. are called harmonic oscillators. We shall analyse simple harmonic 
motion in some detail, because it successfully describes many oscillating systems, both 
in real life and in theory. Fortunately, the mathematics of s.h.m. can be approached 
through a simple defining equation. The properties of the motion can be deduced from 
the relations between graphs of displacement against time, and velocity against time, 
which we met in Topic 2.
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Simple	harmonic	motion	(s.h.m.)

Simple harmonic motion is defined as the motion of a particle about a fixed point 
such that its acceleration a is proportional to its displacement x from the fixed 
point, and is in the opposite direction.

Note that, since the acceleration and the displacement are in opposite directions then 
acceleration is always directed towards the fixed point from which displacement is measured.

Mathematically, we write this definition as

a = –ω 2x

where ω2 is a constant. We take the constant as a squared quantity, because this will 
ensure that the constant is always positive (the square of a positive number, or of a negative 
number, will always be positive). Why worry about keeping the constant positive? This is 
because the minus sign in the equation must be preserved. It has a special significance, 
because it tells us that the acceleration a is always in the opposite direction to the 
displacement x. Remember that both acceleration and displacement are vector quantities, so 
the minus sign is shorthand for the idea that the acceleration is always directed towards the 
fixed point from which the displacement is measured. This is illustrated in Figure 17.3.

point from
which displacement
is measured

displacement
acceleration

displacement
acceleration

▲	 Figure 17.3	Directions	of	displacement	and	acceleration	are	always	opposite

The defining equation is represented in a graph of a against x as a straight line, of 
negative gradient, through the origin, as shown in Figure 17.4. The gradient is negative 
because of the minus sign in the equation. Note that both positive and negative values for 
the displacement should be considered.

The square root of the constant ω 2 (that is, ω) is known as the angular frequency of the 
oscillation. This angular frequency ω is related to the frequency f of the oscillation by 
the expression

ω = 2πf 

where one complete oscillation is described as 2π radians.

Since period T is related to frequency f by the expression

frequency f = 1/T

then

angular frequency ω = 
2π
T

By Newton’s second law, the force acting on an object is proportional to the acceleration 
of the object. The defining equation for simple harmonic motion can thus be related 
to the force acting on the particle. If the acceleration of the particle is proportional to 

0

a

x

▲	 Figure 17.4	Graph	of	the	
defining	equation	for	
simple	harmonic	motion
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its displacement from a fixed point, the resultant force acting on the particle is also 
proportional to the displacement. We can bring in the idea of the direction of the 
acceleration by specifying that the force is always acting towards the fixed point, or by 
calling it a restoring force.

Solution	of	equation	for	simple	harmonic	motion
In order to find the displacement–time relation for a particle moving in a simple 
harmonic motion, we need to solve the equation a = −ω2x. To derive the solution 
requires mathematics which is beyond the requirements of Cambridge International  
AS & A Level Physics. However, you need to know the form of the solution. This is

x = x0 sin ω t

where x0 is the amplitude of the oscillation and at time t = 0, the particle is at its 
equilibrium position defined as displacement x = 0. The variation with time t of the 
displacement x for this solution is shown in Figure 17.5.

 

MATHS NOTE

There are actually two solutions to the defining equation of simple harmonic motion, 
a = −ω 2x, depending on whether the timing of the oscillation starts when the 
particle has zero displacement or is at its maximum displacement. If at time t = 0 
the particle is at its maximum displacement, x = x0, the solution is x = x0 cos ω t (not 
shown in Figure 17.5). The two solutions are identical apart from the fact that they 
are out of phase with each other by one quarter of a cycle or π/2 radians.

The variation of velocity with time is sinusoidal if the cosinusoidal displacement 
solution is taken:

v = − v0 sin ω t when x = x0 cos ω t

0

x

x0

– x0

t

x = x0sin    tω

▲	 Figure 17.5	Displacement–time	curve	for	simple	harmonic	motion

In Topic 2.1 it was shown that the gradient of a displacement–time graph may be 
used to determine velocity at any point (the instantaneous velocity) by taking a tangent 
to the curve. Referring to Figure 17.5, it can be seen that, at each time at which 
x = x0, the gradient of the graph is zero (a tangent to the curve would be horizontal). 
Thus, the velocity is zero whenever the particle has its maximum displacement. If we 
think about a mass vibrating up and down on a spring, this means that when the spring 
is fully stretched and the mass has its maximum displacement, the mass stops moving 
downwards and has zero velocity. Also from Figure 17.5, we can see that the gradient of 
the graph is at a maximum whenever x = 0. This means that when the spring is neither 
under- or over-stretched the speed of the mass is at a maximum. After passing this 
point, the spring forces the mass to slow down until it changes direction.
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If a full analysis is carried out, it is found that the variation of velocity with time is 
cosinusoidal when the displacement is sinusoidal. This is illustrated in Figure 17.6.

0

v

t

t
0

a

v = v0 cos     tω

a = –a0 sin     t ω

–a0

a0

–v0

v0

▲	 Figure 17.6	Velocity–time	and	acceleration–time	graph	for	simple	harmonic	motion

The velocity v of the particle is given by the expression

v = v0 cos ω t when x = x0 sin ω t

There is a phase difference between velocity and displacement. The velocity curve is  
π/2 rad ahead of the displacement curve. The maximum speed v0 is given by

v0 = x0ω 

There is an alternative expression for the velocity:

v0 = ±ω  x x( )0
2 2−

which is derived and used in Topic 17.2.

For completeness, Figure 17.6 also shows the variation with time of the acceleration a of 
the particle. This could be derived from the velocity–time graph by taking the gradient. 
The equation for the acceleration is

 a = −a0 sin ω t when x = x0 sin ω t

WORKED EXAMPLE 17A

 The displacement x at time t of a particle moving in simple harmonic motion is 
given by x = 0.36 sin 10.7t, where x is in metres and t is in seconds.
a Use the equation to find the amplitude, frequency and period for the motion.
b Find the displacement when t = 0.35 s.

Answers
 a Compare the equation with x = x0 sin ω t. The amplitude x0 = 0.36 m.  

The angular frequency ω = 10.7 rad s−1. Remember that ω = 2πf, so the  
frequency f = ω/2π = 10.7/2π = 1.7 Hz. The period T = 1/f = 1/1.7 = 0.59 s.

b Substitute t = 0.35 s in the equation, remembering that the angle ω t is  
in radians and not degrees. ω t = 10.7 × 0.35 = 3.75 rad = 215°. 
So x = 0.36 sin 215° = −0.21 m.
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1 A mass oscillating on a spring has an amplitude of 0.20 m and a period of 1.5 s.

a Deduce the equation for the displacement x if timing starts at the instant when 
the mass has its zero displacement.

b Calculate the time interval from t = 0 before the displacement is 0.17 m.

17.2 Energy in simple harmonic motion
Kinetic	energy
In Topic 17.1, we saw that the velocity of a particle vibrating with simple harmonic 
motion varies with time and, consequently, with the displacement of the particle. 
For the case where displacement x is zero at time t = 0, displacement and velocity are 
given by

x = x0 sin ωt

and

v = x0ω cos ωt or v = v0 cos ωt

There is a trigonometrical relation between the sine and the cosine of an angle θ, which 
is sin2 θ + cos2 θ = 1. Applying this relation, we have

x2/x0
2 + v2/x0

2ω2 = 1

which leads to

v2 = x0
2ω2 − x2ω2

and so

v = ±ω x x( )0
2 2−

The kinetic energy of the particle (of mass m) oscillating with simple harmonic motion is 
1
2mv2. Thus, the kinetic energy Ek at displacement x is given by

Ek = 12mω 2(x0
2 − x2)

The variation with displacement of the kinetic energy is shown in Figure 17.7.

–x0 0 x0

Ek

x

▲	 Figure 17.7	Variation	of	kinetic	energy	in	s.h.m.

Potential	energy
The defining equation for simple harmonic motion can be expressed in terms of 
the restoring force Fres acting on the particle. Since F = ma and a = −ω2x then at 
displacement x, this force is

Fres = −mω2x

where m is the mass of the particle. To find the change in potential energy of the particle 
when the displacement increases by Δx, we need to find the work done against the 
restoring force.

Question
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The work done in moving the point of application of a force F by a distance Δx is FΔx.  
In the case of the particle undergoing simple harmonic motion, we know that the 
restoring force is directly proportional to displacement. To calculate the work done 
against the restoring force in giving the particle a displacement x, we take account 
of the fact that Fres depends on x by taking the average value of Fres during this 
displacement. The average value of force is just 12mω2x, since the value of Fres is zero at 
x = 0 and increases linearly to mω2x at displacement x. Thus, the potential energy Ep at 
displacement x is given by average restoring force × displacement, or

Ep = 12mω 2x2

The variation with displacement of the potential energy is shown in Figure 17.8.

–x0 0 x0
x

Ep

▲	 Figure 17.8	Variation	of	potential	energy	in	s.h.m.

Total	energy
The total energy Etot of the oscillating particle is given by

Etot = Ek + Ep

      = 12mω 2(x0
2 − x2) + 12mω 2x2

Etot = 12mω 2x0
2

This total energy is constant since m, ω  and x0 are all constant. We might have expected 
this result, as it merely expresses the law of conservation of energy.

The variations with displacement x of the total energy Etot, the kinetic energy Ek and the 
potential energy Ep are shown in Figure 17.9.

–x0 0 x0

E

Etot

Ep

Ek

x

▲	 Figure 17.9	Energy	variations	in	s.h.m.

WORKED EXAMPLE 17B

 A particle of mass 95 g oscillates in simple harmonic motion with angular frequency 
12.5 rad s−1 and amplitude 16 mm. Calculate:
a the total energy
b the kinetic and potential energies at half-amplitude (at displacement  

x = 8.0 mm).
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2 A particle of mass 0.35 kg oscillates in simple harmonic motion with frequency 
4.0 Hz and amplitude 8.0 cm. Calculate, for the particle at displacement 7.0 cm:

a the kinetic energy

b the potential energy

c the total energy.

17.3 Damped and forced oscillations, resonance

A particle is said to be undergoing free oscillations when the only external force 
acting on it is the restoring force.

There are no forces to dissipate energy and so the oscillations have constant amplitude. 
Total energy remains constant. This is the situation we have been considering so far. 
Simple harmonic oscillations are free oscillations.

In real situations, however, frictional and other resistive forces cause the 
oscillator’s energy to be dissipated, and this energy is converted eventually into 
thermal energy. The oscillations are said to be damped.

The total energy of the oscillator decreases with time. The damping is said to be light 
when the amplitude of the oscillations decreases gradually with time. This is illustrated 
in Figure 17.10. The decrease in amplitude is, in fact, exponential with time. The period 
of the oscillation is slightly greater than that of the corresponding free oscillation.

0

di
sp

la
ce

m
en

t

time

▲	 Figure 17.10	Lightly	damped	oscillations

Heavier damping causes the oscillations to die away more quickly. If the damping is 
increased further, then the system reaches critical damping point. Here the displacement 
decreases to zero in the shortest time, without any oscillation (Figure 17.11, overleaf).

Answers
a Using  Etot = 12mω 2x0

2,

           Etot = 12 × 0.095 × 12.52 × (16 × 10−3)2

                  = 1.90 × 10−3 J
 (Don’t forget to convert g to kg and mm to m.)
b Using Ek = 12mω 2(x0

2 − x2)

           Ek = 12 × 0.095 × 12.52 ×  [(16 × 10−3)2 − (8 × 10−3)2]
                 = 1.43 × 10−3 J
  Using Etot = Ek + Ep
 1.90 × 10−3  = 1.43 × 10−3 + Ep
               Ep = 0.47 × 10−3 J

Question
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critically
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▲	 Figure 17.11	Critical	damping	and		
overdamping

Any further increase in damping produces overdamping or heavy damping. The 
displacement decreases to zero in a longer time than for critical damping (Figure 17.11).

Damping is often useful in an oscillating system. For example, vehicles have springs between 
the wheels and the frame to give a smoother and more comfortable ride (Figure 17.12). 
If there was no damping, a vehicle would move up and down for some time after hitting a 
bump in the road. Dampers (shock absorbers) are connected in parallel with the springs so 
that the suspension has critical damping and comes to rest in the shortest time possible. 
Dampers often work through hydraulic action. When the spring is compressed, a piston 
connected to the vehicle frame forces oil through a small hole in the piston, so that the 
energy of the oscillation is dissipated as thermal energy in the oil.

Many swing doors have a damping mechanism fitted to them. The purpose of the 
damper is so that the open door, when released, does not overshoot the closed position 
with the possibility of injuring someone approaching the door. Most door dampers 
operate in the overdamped or heavily damped mode.

Forced	oscillations	and	resonance
When a vibrating object undergoes free (undamped) oscillations, it vibrates at its natural 
frequency. We met the idea of a natural frequency in Topic 8, when talking about stationary 
waves on strings. The natural frequency of such a system is the frequency of the first mode 
of vibration; that is, the fundamental frequency. A practical example is a guitar string, 
plucked at its centre, which oscillates at a particular frequency that depends on the speed of 
progressive waves on the string and the length of the string. The speed of progressive waves 
on the string depends on the mass per unit length of the string and the tension in the string.

Vibrating objects may have periodic forces acting on them. These periodic forces will 
make the object vibrate at the frequency of the applied force, rather than at the natural 
frequency of the system. The object is then said to be undergoing forced vibrations. 
Figure 17.13 illustrates apparatus which may be used to demonstrate the forced vibrations 
of a mass on a helical spring. The vibrator provides the forcing (driving) frequency and has 
a constant amplitude of vibration.

to signal
operator

vibrator

thread

pulley

helical
spring

mass

▲	 Figure 17.13	Demonstration	of	forced	oscillations

▲	 Figure 17.12	Vehicle	suspension	system	
showing	springs	and	dampers
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As the frequency of the vibrator is gradually increased from zero, the mass begins 
to oscillate. At first the amplitude of the oscillations is small, but it increases with 
increasing frequency. When the driving frequency equals the natural frequency of 
oscillation of the mass–spring system, the amplitude of the oscillations reaches a 
maximum. The frequency at which this occurs is called the resonant frequency, 
and resonance is said to occur.

Resonance occurs when the natural frequency of vibration of an object is equal to 
the driving frequency, giving a maximum amplitude of vibration.

If the driving frequency is increased further, the amplitude of oscillation of the mass 
decreases. The variation with driving frequency of the amplitude of vibration of the 
mass is illustrated in Figure 17.14. This graph is often called a resonance curve.
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▲	 Figure 17.14	Resonance	curve ▲	 Figure 17.15	Effect	of	damping	on	the	resonance		
curve

The effect of damping on the amplitude of forced oscillations can be investigated by 
attaching a light but stiff card to the mass in Figure 17.13. Movement of the card gives 
rise to air resistance and thus damping of the oscillations. The degree of damping may 
be varied by changing the area of the card. The effects of damping are illustrated in 
Figure 17.15. It can be seen that, as the degree of damping increases:

» the amplitude of oscillation at all frequencies is reduced
» the frequency at maximum amplitude shifts gradually towards lower frequencies
» the peak becomes flatter.

Barton’s pendulums may be used to demonstrate resonance and the effects of damping. 
The apparatus consists of a set of light pendulums, made (for example) from paper 
cones, and a more massive pendulum (the driver), all supported on a taut string.  
The arrangement is illustrated in Figure 17.16. The lighter pendulums have different 
lengths, but one has the same length as the driver. This has the same natural frequency 
as the driver and will, therefore, vibrate with the largest amplitude of all the pendulums 
(Figure 17.17).

l
l

driver

▲	 Figure 17.16	Barton’s	pendulums

▲	 Figure 17.17	Time-
exposure	photographs	
of	Barton’s	pendulums	
with	light	damping,	
taken	end-on.	The	
longest	arc,	in	the	
middle,	is	the	driver.
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Adding weights to the paper cones reduces the effect of damping. With less damping, 
the amplitude of the resonant pendulum is much larger.

There are many examples in everyday life of forced oscillations causing resonance.  
One of the simplest is that of pushing a child on a swing. We push at the same 
frequency as the natural frequency of oscillation of the swing and child, so that the 
amplitude of the motion increases.

The operation of the engine of a vehicle causes a periodic force on the parts of the 
vehicle, which can cause them to resonate. For example, at particular frequencies of 
rotation of the engine, the mirrors may resonate. To prevent excessive vibration, the 
mountings of the mirrors provide damping.

A spectacular example of resonance that is often quoted is the failure in 1940 of the first 
suspension bridge over the Tacoma Narrows in Washington State, USA. Wind caused 
the bridge to oscillate. It was used for months even though the roadway was oscillating 
with transverse vibrations. Approaching vehicles would appear, and then disappear, as 
the bridge deck vibrated up and down. One day, strong winds set up twisting vibrations 
(Figure 17.18) and the amplitude of vibration increased due to resonance, until eventually 
the bridge collapsed. The driver of a car that was on the bridge managed to walk to safety 
before the collapse, although his dog could not be persuaded to leave the car.

▲	 Figure 17.18	The	Tacoma	Narrows	bridge	disaster

EXTENSION

Musical instruments rely on resonance to amplify the sound produced. The sound 
from a tuning fork is louder when it is held over a tube of just the right length, 
so that the column of air resonates. We met this phenomenon in Topic 8.1, in 
connection with the resonance tube method of measuring the speed of sound in air. 
Stringed instruments have a hollow wooden box with a hole under the strings which 
acts in a similar way. To amplify all notes from all of the strings, the sounding-box 
has to be a complex shape so that it resonates at many different frequencies.

SUMMARY

» The period of an oscillation is the time taken to 
complete one oscillation.

» Frequency is the number of oscillations per unit 
time.

» Frequency f is related to period T by the 
expression f = 1/T.

» The displacement of a particle is its distance (in a 
stated direction) from the equilibrium position.

» Amplitude is the maximum displacement.

» Simple harmonic motion (s.h.m.) is defined 
as the motion of a particle about a fixed point 
such that its acceleration a is proportional to 
its displacement x from the fixed point, and 
is directed towards the fixed point, a ∝  −x or  
a = −ω 2x.

» The constant ω in the defining equation for 
simple harmonic motion is known as the angular 
frequency.

482807_17_CI_AS_Phy_SB_3e_272-285.indd   282 30/05/20   6:54 PM



283

17

End of topic questions

» For a particle oscillating in s.h.m. with frequency f, 
then ω = 2πf and T = 2π/ω .

» Simple harmonic motion is described in terms 
of displacement x, amplitude x0, frequency f, and 
angular frequency ω by the following relations.

 displacement: x = x0sin ω t or x = x0cos ω t
 velocity: v = x0ω cos ω t or v = −x0ω sin ω t or 
 v = ±ω √(x0

2 − x2)
 acceleration: a = −x0ω 2 sin ω t or a = −x0ω 2 cos ω t.
» Remember that ω = 2πf, and the equations above 

may appear in either form.
» For a particle oscillating in s.h.m., graphs of the 

displacement, velocity and acceleration are all 
sinusoidal but have a phase difference.

» Velocity is out of phase with displacement by  
π/2 radians, meaning velocity is zero at maximum 
displacement and maximum when displacement 
is zero.

» Acceleration is out of phase with displacement 
by π radians, meaning acceleration is maximum 
at maximum displacement but in the opposite 
direction.

» The kinetic energy Ek of a particle of mass m 
oscillating in simple harmonic motion with angular 
frequency ω and amplitude x0 is Ek = 

1
2mω 2(x0

2 − x2) 
where x is the displacement.

» The potential energy Ep of a particle of mass 
m oscillating in simple harmonic motion with 
angular frequency ω is Ep = 

1
2mω 2x2 where x is the 

displacement.

» The total energy Etot of a particle of mass m 
oscillating in simple harmonic motion with  
angular frequency ω and amplitude x0 is 

 Etot = 
1
2mω 2x0

2.
» For a particle oscillating in simple harmonic motion
 Etot = Ek + Ep

 and this expresses the law of conservation of 
energy.

» Free oscillations are oscillations where there 
are no resistive forces acting on the oscillating 
system.

» Damping is produced by resistive forces which 
dissipate the energy of the vibrating system.

» Light damping causes the amplitude of vibration 
of the oscillation to decrease gradually. Critical 
damping causes the displacement to be reduced 
to zero in the shortest time possible, without any 
oscillation of the object. Overdamping or heavy 
damping also causes an exponential reduction 
in displacement, but over a greater time than for 
critical damping.

» The natural frequency of vibration of an object is 
the frequency at which the object will vibrate when 
allowed to do so freely.

» Forced oscillations occur when a periodic driving 
force is applied to a system which is capable of 
vibration.

» Resonance occurs when the driving frequency 
on the system is equal to its natural frequency of 
vibration. The amplitude of vibration is a maximum 
at the resonant frequency.

END OF TOPIC QUESTIONS

1 A particle is oscillating in simple harmonic motion with period 2.5 ms and 
amplitude 4.0 mm.

 At time t = 0, the particle is at the equilibrium position. Calculate, for this particle:
a the frequency,
b the angular frequency,
c the maximum speed,
d the magnitude of the maximum acceleration,
e the displacement at time t = 0.8 ms,
f the speed at time t = 1.0 ms.

2 A spring stretches by 69 mm when a mass of 45 g is hung from it. The spring is 
then stretched a further distance of 15 mm from the equilibrium position, and the 
mass is released at time t = 0.

  When the spring is released, the mass oscillates with simple harmonic motion of 
period T.

 The period T is given by the expression

 T = 2π √(m/k)

 where k is the spring constant and m is the mass on the spring.
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 Calculate:

a the spring constant,
b the amplitude of the oscillations,
c the period,
d the displacement at time t = 0.20 s.

3 One particle oscillating in simple harmonic motion has ten times the total energy 
of another particle, but the frequencies and masses are the same. Calculate the 
ratio of the amplitudes of the two motions.

4 A ball is held between two fixed points A and B by means of two stretched springs, 
as shown in Fig. 17.19.

 The ball is free to oscillate along the straight line AB. The springs remain 
stretched and the motion of the ball is simple harmonic. The variation with time t of 
the displacement x of the ball from its equilibrium position is shown in Fig. 17.20.

–2

0

1

–1

2

t / s

x 
/ c

m

0.2 0.4 0.6 0.8 1.21.00.2 0.4 0.6 0.8 1.21.0

▲	 Figure 17.20

a i Use Fig. 17.20 to determine, for the oscillations of the ball:
1 the amplitude, [1]
2 the frequency. [2]

ii Show that the maximum acceleration of the ball is 5.2 m s−2. [2]
b Use your answers in a to plot, on a copy of Fig. 17.21, the variation with 

displacement x of the acceleration a of the ball. [2]

0

a
 /m

s–2

x /10–2 m

▲	 Figure 17.21

c Calculate the displacement of the ball at which its kinetic energy is equal to one 
half of the maximum kinetic energy.  [3]

Cambridge International AS and A Level Physics (9702) Paper 43 Q3 May/June 2013

ballA B

▲	 Figure 17.19

482807_17_CI_AS_Phy_SB_3e_272-285.indd   284 30/05/20   6:54 PM



285

17

End of topic questions

5 A metal plate is made to vibrate vertically by means of an oscillator, as shown in 
Fig. 17.22.

oscillator

direction of
oscillations

plate

sand

▲	 Figure 17.22

 Some sand is sprinkled on to the plate.

 The variation with displacement y of the acceleration a of the sand on the plate is 
shown in Fig. 17.23.
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▲	 Figure 17.23

a i Use Fig. 17.23 to show how it can be deduced that the sand is undergoing 
simple harmonic motion. [2]

ii Calculate the frequency of oscillation of the sand. [2]
b The amplitude of oscillation of the plate is gradually increased beyond 8 mm. 

The frequency is constant.
 At one amplitude, the sand is seen to lose contact with the plate.
 For the plate when the sand first loses contact with the plate:

i state the position of the plate, [1]
ii calculate the amplitude of oscillation. [3]
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A LEVEL

	 18 Electric	fields

Learning outcomes
By the end of this topic, you will be able to:

18.1 Electric fields and field lines
1  understand that an electric field is an 

example of a field of force and define electric 
field as force per unit positive charge

2  recall and use F = qE for the force on a charge 
in an electric field

3  represent an electric field by means of field 
lines

18.2 Uniform electric fields
1  recall and use E =	ΔV/Δd to calculate the 

field strength of the uniform field between 
charged parallel plates

2  describe the effect of a uniform electric field 
on the motion of charged particles

18.3 Electric force between point charges
1  understand that, for a point outside a 

spherical conductor, the charge on the sphere 
may be considered to be a point charge at its 
centre

2  recall and use Coulomb’s law F = Q1Q2 /(4πε0r
2) 

for the force between two point charges in 
free space

18.4 Electric field of a point charge

1  recall and use E = Q/(4πε0r
2) for the electric 

field strength due to a point charge in free 
space

18.5 Electric potential
1  define the electric potential at a point as 

the work done per unit positive charge in 
bringing a small test charge from infinity  
to the point

2  recall and use the fact that the electric field 
strength at a point is equal to the negative of 
the potential gradient at that point

3  use V = Q/(4πε0r) for the electric potential in 
the field due to a point charge

4  understand how the concept of electric 
potential leads to the electric potential 
energy of two point charges and use   
Ep = Qq/(4πε0r)

Starting points
★ There are two types of charge, positive and negative, and the unit of charge is 

the coulomb.
★ Objects can be charged by friction or induction.
★ Electric forces hold electrons in atoms, and bind atoms together in molecules 

and in solids.
★ Work is done when a force moves its point of application in the direction of 

the force.
★ Potential difference is the work done (energy transferred) per unit charge as 

it moves from one point to the other.

18.1 Electric fields and field lines
Some effects of static electricity are familiar in everyday life. For example, a balloon 
rubbed on a woollen jumper will stick to a wall, dry hair crackles (and may actually 
spark!) when brushed and you may feel a shock when you touch the metal door handle 
of a car when getting out after a journey in dry weather. All these are examples of 
insulated objects that have gained an electric charge by friction – that is, by being 
rubbed against other objects.
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18.1 Electric fields and field lines

Insulators that are charged by friction will attract other objects. Some of the effects have 
been known for centuries. Greek scientists experimented with amber that was charged 
by rubbing it with fur. Today, electrostatics experiments are often carried out with 
plastic materials that are moisture repellent and stay charged for longer times.

Charging by friction can be hazardous. For example, a tanker which carries a bulk 
powder must be earthed before unloading, otherwise, electric charge may build up 
on the tanker. This could then lead to a spark between the tanker and earth, causing 
an explosion. Similarly, pipes used for movement of highly flammable liquids (for 
example, petrol) are metal-clad. An aircraft moving through air will also become 
charged. To prevent the first person touching the aircraft on landing from becoming 
injured, the tyres are made to conduct, so that, on landing, the aircraft loses its 
charge.

There are two kinds of electric charge. Polythene becomes negatively charged when 
rubbed with wool and cellulose acetate becomes positively charged, also when rubbed 
with wool. To understand this, we need to consider the model of the atom. An atom 
consists of a positively charged nucleus with negatively charged electrons orbiting 
it. When the polythene is rubbed with wool, friction causes some electrons to be 
transferred from the wool to the polythene. The polythene has a negative charge and the 
wool is left with a positive charge. Cellulose acetate becomes positive because it loses 
some electrons to the wool when it is rubbed. Polythene and cellulose acetate are poorly 
conducting materials and so the charges remain static on their surfaces.

Putting two charged polythene rods close to one another, or two charged acetate 
rods close to one another, shows that similar charges repel one another (Figure 18.1). 
Conversely, unlike charges attract. A charged polythene rod attracts a charged 
acetate rod.

–––– –
–

–– –

–––
– –––

–
–

▲ Figure 18.1 Like charges repel.

This is the basic law of the force between charges:

Like charges repel, unlike charges attract.

▲ Figure 18.2 A charged 
rod can induce charges 
in an uncharged object.

Charged rods will also attract uncharged objects. For example, a charged polythene 
rod will pick up small pieces of paper. The presence of charge on the rod causes a 
redistribution of charge on the paper. Electrons are repelled to the side away from the 
rod so that the side nearest the rod is positive and is, therefore, attracted to the rod 
(Figure 18.2). The paper is said to be charged by induction. When the rod is removed, 
the electrons will move back and cancel the positive charge.

Electric fields
Electric charges exert forces on one another even when they are separated by a distance. 
The concept of an electric field is used to explain this force at a distance.

An electric field is a region of space where a stationary electric charge experiences 
a force.

Electric fields are invisible but they can be represented by electric lines of force just as 
gravitational fields can be represented by gravitational lines of force (Topic 13.1)  
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and magnetic fields can be represented by magnetic lines of force (see Topic 20.1).  
The direction of the electric field is defined as the direction in which a small positive 
charge would move if it were free to do so. Hence, the lines of force are drawn with 
arrows that point from positive charge to negative charge.

For an electric field:
» a line of force starts on a positive charge and ends on a negative charge
» the lines of force are smooth curves that never touch or cross
» the strength of the electric field is indicated by the closeness of the lines: the 

closer the lines, the stronger the field.

Note that electric field and electric field strength are vector quantities.

3000 V 

castor oil

▲	 Figure 18.3	Apparatus	for	investigating	electric	field	patterns

The apparatus of Figure 18.3 can be used to show electric field patterns. Semolina 
is sprinkled on to the surface of a non-conducting oil and a high voltage is applied 
between the plates. The semolina becomes charged by induction and lines up along the 
lines of force. Some electric field patterns are illustrated in Figure 18.4. Note that the 
lines are always normal to a conducting surface. The pattern for a charged conducting 
sphere (Figure 18.4c) is of particular importance and will be considered in more detail 
in Topic 18.3.

a) b)

c) d)

▲	 Figure 18.4	Some	electric	field	patterns
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18.1 Electric fields and field lines

EXTENSION

Induced fields and charges
There is no resultant electric field inside a conductor unless this is being maintained 
by a source of electromotive force (e.m.f.). The reason for this is that the electrons 
are free to move in the conductor. As soon as a charged body is placed close to the 
conductor, the electric field of the charged body causes electrons in the conductor 
to move in the opposite direction to the electric field (the electrons are negatively 
charged). This is illustrated in Figure 18.5. The electrons create an electric field in 
the opposite direction to the field due to the charged body. The induced charges  
(the electrons) will stop moving when the two fields are equal and opposite.  
The consequence is that there is no electric field in the conductor.

charged
sphere conductor

field due to
charges in conductor

field due to
charged sphere

▲ Figure 18.5 Induced charges

Charging by induction
The effect illustrated in Figure 18.5 may be used to charge a conductor.  
The process is shown in Figure 18.6. A positively charged rod is placed near to an 
uncharged conductor that is insulated from earth. Induced charges appear on the 
insulated conductor, as shown in Figure 18.6a. The conductor is now earthed, as 
in Figure 18.6b. Electrons move from earth to neutralise the positive charge on the 
conductor. The earth connection is removed. The negative charge is still held on the 
conductor by the positively charged rod, as in Figure 18.6c. Finally, the charged rod 
is removed. The electrons on the conductor distribute themselves over its surface, as 
in Figure 18.6d. Note that if a negatively charged rod is used, the final charge on the 
conductor is positive.

a) b) c) d)

▲ Figure 18.6 Charging by induction

Electric field strength

The electric field strength at a point is defined as the force per unit charge acting 
on a small stationary positive charge placed at that point.

If the force experienced by a positive test charge +q placed in an electric field is F, then 
the field strength E is given by

E = F/q
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Note: Do not be confused by the use of the symbol E for field strength. This symbol is 
also used for energy!

The unit of field strength can be deduced from this expression. Since force is measured 
in newtons (N) and charge in coulombs (C), then the SI unit of field strength is newton 
per coulomb (N C−1). We shall see later that the volt per metre (V m−1) is another 
common SI unit for field strength. These two units are equivalent.

From the definition of electric field strength, the force F on a charge q in an electric field 
of strength is given by

F = qE

WORKED EXAMPLE 18A

Two parallel flat metal plates are separated by a distance of 5.0 cm. The uniform 
electric field between the plates is 2.0 × 104 Vm−1. Calculate the force on a charge of 
+5.0 nC situated mid-way between the plates.

Answer
force on electron = qE = 5.0 × 10−9 × 2.0 × 104

 = 1.0 × 10−4 N

1 a Explain what is meant by an electric field.

b Sketch the electric field patterns:

i between two negatively charged particles

ii between a point positive charge and a negatively charged flat metal plate.

2 A positive and a negative charge of the same magnitude are on the same straight line 
as shown in Figure 18.7. State the direction of the electric field strength:

a  at point A

b  at point B

c  at point C

d  at point D.

A

D

B C–

positive
charge 

negative
charge 

+

▲ Figure 18.7

3 Calculate the acceleration on an electron that is in a uniform electric field of field 
strength 5.0 × 102 V m−1.

18.2 Uniform electric fields

A uniform field is where the electric field strength is the same at all points in the field.

In Figure 18.4a, the electric field pattern between the charged parallel plates consists of 
parallel, equally spaced lines, except near the edges of the plates. This shows that the 
electric field between charged parallel plates (as, for example, in a parallel plate capacitor 
[see Topic 19.1]) is uniform. This means that the force experienced by a charge is the 
same, no matter where the charge is placed within the field.

Questions
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 electric fields

Figure 18.8 illustrates charged parallel plates that are a distance d apart with a potential 
difference V between them. A charge +q in the uniform field between the plates has a force 
F acting on it. To move the charge towards the positive plate requires work to be done on 
the charge. Work is defined as the product of force and distance moved in the direction of 
the force. To move the charge from one plate to the other requires work W given by

W = Fd

From the definition of potential difference as the energy transferred per unit charge 
(Topic 9.2),

W = Vq

Thus, W = Fd = Vq and, re-arranging,

F/q = V/d

But, F/q is the force per unit charge which is the field strength. Thus, for the uniform 
field, the field strength is given by

E = V/d

The equation gives an alternative unit for field strength, V m−1. The two units, V m−1 and 
N C−1 are equivalent.

It is assumed that the potential difference V changes at a constant rate over the distance d.

Where the change in potential difference varies with distance, then the small change 
ΔV of potential difference over a small distance Δd should be considered and then the 
electric field strength E is given by

E =  ΔV/Δd

WORKED EXAMPLE 18B

Two parallel metal plates are separated by a distance of 5.0 cm. The potential 
difference between the plates is 1000 V.

Calculate the electric field strength between the plates.

Answer
From E = V/d, E = 1000/5.0 × 10−2 = 2.0 × 104 V m−1.

4 Two metal plates 15 mm apart have a potential difference of 750 V between them. 
The force on a small charged sphere placed between the plates is 1.2 × 10−7 N. 
Calculate:

a the strength of the electric field between the plates

b the charge on the sphere.

Motion of charged particle in an electric field
Charged particle moving parallel to the field
A charged particle either at rest or moving parallel to an electric field experiences an 
electric force. The direction of the force depends on the sign of the charge. A particle 
having charge +q is accelerated in the direction of the field by the electric force.  
For a uniform field, the force and hence the acceleration of the particle are constant.  
The equations of uniformly accelerated motion, studied in Topic 2, can be used to 
determine the motion of the particle.

+ –

+q

F

d

V

▲ Figure 18.8

Question
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A uniform electric field E is produced by a potential difference V across two horizontal 
parallel metal plates separated by distance d, as shown in Figure 18.9. A particle, charge 
+q and mass m, initially at rest on the top plate, moves to the lower plate. The field does 
work on the particle and the charge gains kinetic energy.

charge +qV

d

region of uniform
electric field E 

▲ Figure 18.9

For a final speed v,

work done = gain in kinetic energy

Vq = 1
2
 mv2

and

v = Vq m(2 / )

Alternatively, the motion of the particle can be determined by considering the acceleration 
a produced by the force F due to the electric field. Acceleration a is given by 

a = F/m = qE/m

For the particle moving from rest through distance d from the top plate to the lower 
plate, using v2 = u2 + 2as

v2 = 2 × qE/m × d = 2 × qV/dm × d

v = Vq m(2 / ).

As expected, the same result!

A negatively charged particle would be accelerated in the opposite direction to the 
positively charged particle.

Note that gravitational effects on the particle have not been considered. The reason is 
that, for charged particles, the weight of the particle is negligible when compared to any 
force due to the electric field.

Charged particle moving with initial velocity perpendicular to the field 
direction
A charged particle, having charge +q and mass m, enters a uniform electric field 
with velocity v normal to the direction of the electric field, as shown in Figure 18.10. 
The particle experiences a force at right angles to its initial direction. The particle will 
follow a parabolic path as it passes through the field.
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18.3 Electric force betw
een point charges

path of particle,
charge +q
mass m
velocity v

region of uniform
electric field,
strength E

▲ Figure 18.10

The analysis of the motion is similar to that of a particle of mass m moving in a uniform 
gravitational field with constant velocity in one direction and a constant acceleration in 
a perpendicular direction as described for projectile motion in Topic 2.

WORKED EXAMPLE 18C

 Two parallel metal plates are separated by a distance of 15 mm. The plates are in a 
vacuum and the potential difference between the plates is 600 V.
 An α-particle, mass 6.7 × 10−27 kg and charge +3.2 × 10−19 C, is initially at rest at the 
positively charged plate. Determine:
a the force on the particle
b the acceleration of the particle
c the speed of the particle as it reaches the negatively charged plate.

Answers
a force = Eq = V/d × q = (600 × 3.2 × 10−19)/(15 × 10−3) = 1.28 × 10−14 N

b acceleration = F/m = (1.28 × 10−14)/(6.7 × 10−27) = 1.91 × 1012 m s−2

c v2 = 2as, v2 = 2 × 1.91 × 1012 × 15 × 10 m s−3

 v = 2.4 × 105 m s−1

5 An electron, mass 9.1 × 10−31 kg and charge −1.6 × 10−19 C, enters an evacuated 
region between two horizontal plates, similar to that in Figure 18.10, with a 
horizontal velocity of 6.5 × 107 m s−1. The uniform vertical electric field has field 
strength 4.2 × 105 V m−1 between the plates. The length of the plates is 2.5 cm.

 Calculate the vertical displacement of the electron for its travel between the plates.

18.3 Electric force between point charges
Point charges
Figure 18.11 shows an isolated, positively charged sphere. The electric field surrounding 
the sphere is shown by lines of force and since the sphere is positively charged the 
direction of the electric field is outwards from the sphere.

The sphere is a conductor and so the charge on the sphere distributes itself evenly 
around the surface of the sphere. However, from any position outside the sphere, the 
electric field lines appear to radiate from the centre of the sphere. Consequently:

For any point outside a spherical conductor, the charge on the sphere may be 
considered to act as a point charge at the centre of the sphere.

Question

▲ Figure 18.11 Electric 
field near an isolated 
charged sphere
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This is very similar to the idea that the mass of a uniform sphere can be considered to 
be point mass at the centre of the sphere (see Topic 13.2).

Force between point charges
We have already met the ‘law of charges’, namely

» Like charges repel.
»	 Unlike charges attract.

However, this law is purely qualitative and does not give any indication as to the 
magnitude of the forces.

In the late eighteenth century, the French scientist Charles Coulomb investigated the 
magnitude of the force between charges, and how this force varies with the charges 
involved and the distance between them. He discovered the following rule.

The force between two point charges is proportional to the product of the charges 
and inversely proportional to the square of the distance between them. This is 
known as Coulomb’s law.

Coulomb’s experiments made use of small, charged insulated spheres. Strictly speaking, 
the law applies to point charges, but it can be used for charged spheres provided that 
their radii are small compared with their separation.

F

r

F

+   
1

Q +   
2

Q

▲ Figure 18.12 Force between charged spheres

For point charges Q1 and Q2 situated a distance r apart (Figure 18.12), Coulomb’s law 
gives the force F as

F ~ Q1Q2/r2

or

F = kQ1Q2/(r2)

where k is a constant of proportionality, the value of which depends on the insulating 
medium around the charges and the system of units employed. In SI units, F is 
measured in newtons, Q in coulombs and r in metres. Then the constant k is given as

k = 1
(4πε0)

and so

F = 
Q1Q2

(4πε0r2)
 

when the charges are in a vacuum (free space). The quantity ε0 is called the permittivity 
of free space (or the permittivity of a vacuum).

Notice that this equation has a similar form to that for Newton’s law of gravitation 
between two point masses (see Topic 13.2). Both Newton’s law of gravitation and 
Coulomb’s law are inverse square laws of force. We say that the equations are analogous, 
or that there is an analogy between this aspect of electric fields and gravitational fields.
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18.4 Electric field of a point charge

However, there are important differences:
» The electric force acts on charges, whereas the gravitational force acts on masses.
» The electric force can be attractive or repulsive, depending on the signs of the 

interacting charges, whereas two masses always attract each other.

The value of the permittivity of air is very close to that of a vacuum (1.0005ε0), so the 
equation can be used for the force between charges in a vacuum or in air.

The value of the permittivity of free space is given as

ε0 = 8.85 × 10–12 F m–1

where the unit represented by ‘F’ is called the farad and 1 F is 1 C V–1 (we shall find out 
about this unit in Topic 19).

Note that, when writing down the expression for Coulomb’s law, in the first instance, it 
should be given in terms of ε0 and not k. The value of k is 1/(4πε0) = 8.99 × 109 m F–1.

Coulomb’s law is often referred to as an inverse square law of force, because the 
variation of force with distance r between the charges is proportional to 1/r2. We have 
met another important inverse square law of force when we considered the gravitational 
force between two point masses (Topic 13.2).

WORKED EXAMPLE 18D

Calculate the force between two point charges, each of 1.4 µC, which are 6.0 cm 
apart in a vacuum.

(Permittivity of free space = 8.85 × 10–12 F m–1.)

Answer

Using F = Q1Q2/4πε0r2,

F = (1.4 × 10–6)2/4π × 8.85 × 10–12 × (6.0 × 10–2)2)

= 4.9 N

6 Calculate the force on an α-particle, charge +3.2 × 10–19 C, that is situated in a 
vacuum a distance of 3.2 × 10–7 m from a gold nucleus of charge +1.3 × 10–17 C  
in a vacuum.

 (Permittivity of free space = 8.85 × 10–12 F m–1.)

18.4 Electric field of a point charge
The electric field strength at a point is defined as the force per unit charge acting on a 
small stationary positive charge placed at that point (see Topic 18.1).

We have seen that the electric field due to an isolated point charge is radial (see 
Figure 18.11). We have to mention that the point charge is isolated. If any other object, 
charged or otherwise, is near it, the field would be distorted.

From Coulomb’s law, the force on a test charge q a distance r from the isolated point 
charge Q is given by

F = Qq/4πε0r2

Question
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The electric field E at the location of the test charge q is given by E = F/q. Thus, the 
electric field strength due to the isolated point charge in a vacuum (free space) is

E = Q/4πε0r2

7 A Van de Graaff generator has a spherical metal dome of diameter 36 cm.  
The maximum permissible electric field strength at the surface of the dome is 
2.0 × 104 V m–1..

 Assuming that the charge on the dome acts as if it were all concentrated at the centre 
of the spherical dome, calculate the magnitude of this charge.

 (Permittivity of free space = 8.85 × 10–12  F m–1.)

18.5 Electric potential
We define electric potential in a similar way as we defined gravitational potential in 
Topic 13.4. That is, in terms of the change in energy, or work done, when a small charge 
q is moved between two points A and B in an electric field. It is the work done by the 
electric force in moving a small positive charge towards a point charge Q.

We already know that only differences in potential energy are measurable. We need to 
specify a reference point to act as a zero of electric potential energy and potential.  
In dealing with gravitational energy we often take the floor of the laboratory or the Earth’s 
surface as zero, and measure mgΔh from one of these. Similarly, in electrical problems, 
it is often convenient to take earth potential as zero, especially if part of the circuit is 
earthed. But the ‘official’ definition of the zero of electric potential is the potential of a 
point an infinite distance away. This means that

The electrical potential at a point in an electric field is defined as the work 
done per unit positive charge in bringing a small test charge from infinity to the 
point.

The symbol for potential is V, and its unit is the volt which is equivalent to the joule per 
coulomb (J C–1).

Two points in an electric field are at the same potential if the work done moving a 
charge between them along any path is zero.

Two points may be at different potentials. The difference in the potentials is known 
as the potential difference. We have already met the idea in Topic 9.2 that the potential 
difference across a component in a circuit is the energy transferred per unit charge in 
moving charge between these points in the circuit. We can now use this idea to describe 
the potential difference between any points in an electric field.

WORKED EXAMPLE 18E

In a simplified model of the hydrogen atom, the electron is at a distance of  
5.3 × 10–11 m from the proton. The proton charge is +1.6 × 10–19 C. Calculate the 
electric field strength of the proton at this distance.

Answer
Assuming that the field is radial,

E = Q/4πε0r2 = 1.6 × 10–19/(4π × 8.85 × 10–12 × (5.3 × 10–11)2)

= 5.1 × 1011 N C–1

Question
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18.5 Electric potential

Electric potential in the field due to a point charge
The electric potential V at points in the field of a point charge Q is given by  
the expression

V = 
Q

(4πε0r)  

where r is the distance from the charge Q.

The potential very near a positive point charge is large, and decreases towards zero as 
we move away from the charge which is the source of the field. If the charge producing 
the field is negative, the potential is also negative and increases towards zero as the 
distance from the charge increases. Note that the variation of potential with distance is 
an inverse proportionality, and not the inverse square relationship that applies for the 
variation of field strength with distance.

a)

V

0 r

b)

–V

0 r

▲ Figure 18.13 Variation of the electric potential a) for a positive point charge and b) for a 
negative point charge

Electric field strength and electric potential
The rate of change of electric potential with distance is called the potential gradient.  
It can be shown that there is an important link between the electric field strength at any 
point and the electric potential gradient at that point.

The electric field strength is equal to the negative of the potential gradient at that 
point.

Thus, if we have a graph showing how the potential changes with distance in a field, the 
gradient of this graph at any point gives us the numerical value of the field strength at 
that point.

WORKED EXAMPLE 18F

 The electric potential at point A is 450 V and at point B it is –150 V. Calculate:
a the potential difference between points A and B
b the work done in moving a proton from point B to point A.

Answers
a potential difference = 450 – (–150) = 600 V
b  work is done on the proton to move it towards a positive charge  

(potential increases)
 work done = qΔV = 1.60 × 10–19 × 600
 = 9.6 × 10–17 J
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Note that the field strength and potential gradient have opposite signs because they 
are in opposite directions. If the difference in potential between two points in a field 
is negative (potential is decreasing) a small positive charge would tend to move in the 
direction of the electric field. If the difference in potential between two points in a field 
is positive, a small positive charge would tend to move in the opposite direction to that 
of the electric field.

For the special case of a uniform electric field, the field strength is constant and so the 
potential gradient is constant. This can be seen in Figure 18.14.

gradient = – V
d

d
distance

a)
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0

+V field strength =
V
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b)

–(
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▲ Figure 18.14 Graphs of the potential and the (negative of the) potential gradient for a 
uniform electric field

For the electric field of a point charge, the field strength is not constant. Figure 18.15 
shows the variation of the electric potential for a positive point charge. The electrical 
potential decreases more rapidly close to the point charge, as shown by the steep 
(negative) slope of the tangent to the curve at point A. At point B the potential gradient 
is still negative, but the slope of the tangent to the curve is not as steep. The potential 
gradient decreases with increasing distance from the point charge, showing (as 
expected) that the electric field strength decreases with distance. The gradient of the 
potential–distance curve at any point, in volts per metre (V m–1), is equal to the negative 
of the electric field strength, measured in V m–1 or newtons per coulomb (N C–1).

Electric potential energy
We have seen that the electrical potential at a point in an electric field is defined as the 
work done per unit positive charge in bringing a small test charge from infinity to the 
point. For an object with charge q, then the electric potential energy of the object will be 
q times as large as for a charge of unit charge.

electric potential energy = charge ×  electric potential

We have also seen that the electric potential at a distance r from a point charge  
Q1 is Q1/(4πε0r).

Thus, if a point charge q is placed a distance r from the point charge Q, then the electric 
potential energy E of the two point charges is given by

EP = 
Qq

(4πε0r)
 

This means that the work done to bring together two isolated point charges q and Q so 
that their separation is r is Qq/(4πε0r).

A

B

d0

V

▲ Figure 18.15 Finding 
the gradient of the 
potential–distance 
curve
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End of topic questions

8 Two +30 μC charges are placed on a straight line 0.40 m apart. A +0.5 μC charge is 
to be moved a distance of 0.10 m along the line from a point midway between the 
charges. How much work must be done?

END OF TOPIC QUESTIONS

1 An α-particle has an initial energy of 6.2 MeV. It approaches head-on a nucleus of 
gold-197 (197

79 Au). The electronic charge is 1.6 × 10–19 C.
a Calculate the distance of closest approach of the α-particle to the gold nucleus.
b Suggest why your answer in a indicates an upper limit for the radius of a gold 

nucleus.

2 a State what is meant by electric potential at a point. [2]
b The centres of two charged metal spheres A and B are separated by  

a distance of 44.0 cm, as shown in Fig. 18.16.

sphere Bsphere A

44.0 cm

x

P

▲ Figure 18.16 (not to scale)

SUMMARY

» Like charges repel; unlike charges attract each 
other.

» When charged objects are placed near insulated 
conductors, there is a redistribution of charges 
giving rise to charging by induction.

» An electric field is a region of space where a 
stationary electric charge experiences a force.

» The direction of electric field lines shows the 
direction of the force on a positive charge placed 
in the field and the separation indicates the field 
strength – greater separation, smaller field 
strength.

» From a point outside a spherical conductor, the 
charge on the sphere can be treated as a point 
charge at its centre.

» Electric field strength is the force per unit positive 
charge E = F/Q.

» The electric field between parallel charge plates is 
uniform and given by the expression E = ΔV/Δd

» An electric charge moving initially at right angles 
to a uniform electric field experiences a constant 
force and so is deflected into a parabolic path.

» The force between two point charges is 
proportional to the product of the charges and 
inversely proportional to the square of the 
distance between them.

 This is Coulomb’s law: F = Q1Q2/(4πε0r2) when the 
charges are in free space (a vacuum) or air.

 ε0 is the permittivity of free space; its value is 
8.85 × 10–12 F m–1.

» The electric field strength E at a point in the field 
of an isolated point charge is given by  
E = Q/(4πε0r2).

» The electric potential at a point in an electric field 
is the work done per unit charge in bringing a 
small positive test charge from infinity to the point

» The electric field strength at any point in a field is 
equal to the negative of potential gradient at that 
point.

» The electric potential V at a point in the field of an 
isolated point charge is given by V = Q/(4πε0r).

» Electric potential energy EP of two point charges is 
given by EP = Qq/(4πε0r).

Question
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 A moveable point P lies on the line joining the centres of the two spheres.  
Point P is a distance x from the centre of sphere A. The variation with distance x 
of the electric potential V at point P is shown in Fig. 18.17.

0 10 20 30 40 50
1.2

1.4

1.6

1.8

2.0

2.2

V
/1

0
4  

V

x /cm

▲ Figure 18.17

i Use Fig. 18.17 to state and explain whether the two spheres have  
charges of the same, or opposite, sign. [1]

ii A positively-charged particle is at rest on the surface of sphere A.
  The particle moves freely from the surface of sphere A to the surface of 

sphere B.
1 Describe qualitatively the variation, if any, with distance x of the speed of 

the particle as it:
  moves from x = 12 cm to x = 25 cm
  passes through x = 26  cm
  moves from x = 27 cm to x = 31 cm
  reaches x = 32 cm [4]
2 The particle has charge 3.2 × 10–19 C and mass 6.6 × 10–27 kg.
  Calculate the maximum speed of the particle. [2]

Cambridge International AS and A Level Physics (9702) Paper 42 Q7 March 2018

3 Two small charged metal spheres A and B are situated in a vacuum. The distance 
between the centres of the spheres is 12.0 cm, as shown in Fig. 18.18.

sphere Bsphere A
P

12.0 cm

x

▲ Figure 18.18 (not to scale)

 The charge on each sphere may be assumed to be a point charge at the centre of 
the sphere.

 Point P is a movable point that lies on the line joining the centres of the spheres 
and is distance x from the centre of sphere A.
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End of topic questions

 The variation with distance x of the electric field strength E at point P is shown in 
Fig. 18.19.
a State the evidence provided by Fig. 18.19 for the statements that:

i the spheres are conductors, [1]
ii the charges on the spheres are either both positive or both negative. [2]

b i State the relation between electric field strength E and potential  
gradient at a point. [1]

ii Use Fig. 18.19 to state and explain the distance x at which the rate  
of change of potential with distance is:

  maximum, [2]
  minimum. [2]

−200

−150

−100

−50

0
2 4 6 8 10 12

50

100

150

E
/1

06
N

C
−

1

x /cm

▲ Figure 18.19

Cambridge International AS and A Level Physics (9702) Paper 41 Q4 Oct/Nov 2011

4 A stationary α-particle, mass 6.6 × 10–27 kg and charge 3.2 × 10–19 C, is situated a 
distance of 4.7 × 10–14 m from the centre of a gold-197 (197

79 Au) nucleus.
a Calculate, for the α-particle and the gold nucleus:

i the electric force between them,
ii the electric potential energy.

b The α-particle is repelled from the stationary gold nucleus.
 Use your answer in a ii to determine the maximum speed of the α-particle.
 (The permittivity of free space ε0 is 8.85 × 10–12 F m–1.)
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19.1 Capacitors and capacitance
Capacitance
Consider an isolated spherical conductor connected to a high voltage supply (Figure 19.1).

It is found that, as the potential of the sphere is increased, the charge stored on the 
sphere also increases. The graph showing the variation of charge Q on the conductor 
with potential V is shown in Figure 19.2.

It can be seen that charge Q is related to potential V by

Q ~ V

Hence,

Q = CV

where C is a constant which depends on the size and shape of the conductor.  
C is known as the capacitance of the conductor.

Capacitance	 19	

A LEVEL

Learning outcomes
By the end of this topic, you will be able to:

19.1 Capacitors and capacitance
1 define capacitance, as applied to both 

isolated spherical conductors and to 
parallel plate capacitors

2 recall and use C = Q/V
3 derive, using C = Q/V, formulae for the 

combined capacitance for capacitors in 
series and in parallel

4 use the capacitance formulae for  
capacitors in series and in parallel

19.2 Energy stored in a capacitor
1 determine the electric potential energy 

stored in a capacitor from the area under 
the potential–charge graph

2 recall and use W = 12QV and hence W = 12CV 2

19.3 Discharging a capacitor
1 analyse graphs of the variation with time 

of potential difference, charge and current 
for a capacitor discharging through a 
resistor

2 recall and use τ = RC for the time constant 
for a capacitor discharging through a 
resistor

3 use equations of the form x = x0 e–(t/RC) 
where x could represent current, charge 
or potential difference for a capacitor 
discharging through a resistor

Starting points
★ There is a uniform electric field between two charged parallel plates.
★ When charge is put on to an isolated conductor, the potential of the conductor 

rises.
★ Electric potential is the work done per unit positive charge in bringing a small 

positive test charge from infinity to the point.
★ The increase in potential of the conductor implies that more energy is being 

stored.

Q

0 V

▲ Figure 19.2 Relation 
between charge and 
potential

conducting sphere

insulator

+ –

high voltage
supply

▲ Figure 19.1 Charged 
spherical conductor
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Capacitance C is the ratio of charge Q to potential V for a conductor.

That is

C = Q/V

Another chance for confusion! The letter C is used as an abbreviation for the unit of 
charge, the coulomb (see Topic 9.1). As an italic letter C it is used as the symbol for 
capacitance.

The unit of capacitance is the farad (symbol F). One farad is one coulomb per volt.

The farad is an inconveniently large unit. In electronic circuits and laboratory 
experiments, the range of useful values of capacitance is from about 10–12 F (1 picofarad, 
or 1 pF) to 10–3 F (1 millifarad, or 1 mF). (See Topic 1.2 for a list of decimal multiples 
and submultiples for use with units.)

Note that capacitance cannot apply to an insulator. When charge is placed on the sphere 
in Figure 19.1, the charge distributes itself so that there is one value of potential for 
the whole sphere. To define capacitance, the whole sphere must have the same value of 
potential. With an insulator, the charge would not be able to move, so that there would 
be different potentials at different points on the insulator. Thus, capacitance does not 
apply to an insulator.

Circuit components which store charge and, therefore, have capacitance are called 
capacitors.

WORKED EXAMPLE 19A

1 Show that the capacitance C of an isolated spherical conductor of radius r is given 
by C = 4πε0r.

2 Calculate the charge stored on an isolated conductor of capacitance 280 µF when 
it is at a potential of 25 V.

Answers
1 Consider a charge +Q on the surface of the sphere. The charge on an isolated 

conducting sphere may be considered to be a point charge at its centre. So, the 
potential V at the surface of the sphere is given by V = Q/4πε0r.

 Capacitance C = Q/V = Q/(Q/4πε0r) = 4πε0r
2 Using C = Q/V, we have Q = CV = 280 × 10–6 × 25
  = 7.0 × 10–3 C

1 The charge on an isolated sphere is 5.4 mC when its potential is 12 V. Calculate the 
capacitance, in microfarads, of the sphere.

Capacitors
The simplest capacitor in an electric circuit consists of two metal plates, with an air 
gap between them which acts as an insulator. This is called a parallel-plate capacitor. 
Figure 19.3a (overleaf) shows the circuit symbol for a capacitor. When the plates are 
connected to a battery, the battery transfers electrons from the plate connected to the 
positive terminal of the battery to the plate connected to the negative terminal. Thus the 
plates carry equal but opposite charges.

The capacitance of a parallel plate capacitor is defined as the charge stored on one 
plate per unit potential difference between the plates.

Question

482807_19_CI_AS_Phy_SB_3e_302-313.indd   303 30/05/20   6:57 PM



304

19
 C

a
pa

C
it

a
n

C
e

19
Note that there are equal but opposite charges on the two plates. Thus, the capacitor 
does not store charge. We shall see later that a capacitor functions to store energy.

The capacitance of an air-filled capacitor can be increased by putting an insulating 
material, such as mica or waxed paper, between the plates. The material between the 
plates is called the dielectric. In a type of capacitor known as an electrolytic capacitor 
the dielectric is deposited by an electrochemical reaction. These capacitors must be 
connected with the correct polarity for their plates, or they will be damaged. The circuit 
symbol for an electrolytic capacitor is shown in Figure 19.3b. Electrolytic capacitors are 
available with capacitances up to about 1 mF.

a)

+
b)

▲ Figure 19.3 Circuit 
symbols for a) a 
capacitor and b) an 
electrolytic capacitor

EXTENSION

Factors affecting capacitance
As stated previously, the material used as a dielectric affects the capacitance of a 
capacitor. The other factors determining the capacitance are the area of the plates 
and the distance between them. Experiment shows that

The capacitance C is directly proportional to the area A of the plates, and 
inversely proportional to the distance d between them.

Putting these two factors together gives

C ∝ A/d

where A is the area of one of the plates.

For a capacitor with air or a vacuum between the plates, the constant of 
proportionality is the permittivity of free space ε0. Thus

C = ε0A/d

Since C is measured in farads, A in square metres and d in metres, we can see that 
the unit for ε0 is farads per metre, F m–1 (see also Topic 18). The value of ε0 is  
8.85 × 10–12 F m–1.

We introduce a quantity called the relative permittivity εr of a dielectric to account 
for the fact that the use of a dielectric increases the capacitance.

The relative permittivity is defined as the capacitance of a parallel-plate 
capacitor with the dielectric between the plates divided by the capacitance of 
the same capacitor with a vacuum between the plates.

Relative permittivity εr is a ratio and has no units. Some values of relative 
permittivity are given in Table 19.1.

material relative permittivity εr

air 1.0005

polyethylene (polythene) 2.3

sulfur 4

paraffin oil 4.7

mica 6

barium titanate 1200

▲ Table 19.1 Relative permittivity of different dielectric materials
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Including the relative permittivity factor, the full expression for the capacitance of a 
parallel-plate capacitor is

C = 
ε0εrA

d

Variable capacitors (Figure 19.4) have one set of plates mounted on a spindle, so that 
the area of overlap can be changed.

fixed
plates

moving
plates

▲ Figure 19.4 Variable capacitor

Varying the capacitance in an electronic tuning circuit is one way of tuning in to 
different frequencies.

WORKED EXAMPLE 19B – EXTENSION

A parallel-plate, air-filled capacitor has square plates of side 30 cm that are a distance 
1.0 mm apart. Calculate the capacitance of the capacitor.

Answer
Using C = ε0εrA/d

C = 8.85 × 10–12 × 1 × (30 × 10–2)2/1.0 × 10–3

 = 8.0 × 10–10 F

2 A capacitor consists of two metal discs of diameter 15 cm separated by a sheet of 
polythene 0.25 mm thick. The relative permittivity of polythene is 2.3. Calculate the 
capacitance of the capacitor. (ε0 is 8.85 × 10–12 F m–1.)

Capacitors in series and in parallel
In Figure 19.5, the two capacitors of capacitance C1 and C2 are connected in series.

V1

+q

C1

V2 V

–q +q –q +q –q

C2 C

▲ Figure 19.5 Capacitors in series

We shall show that the combined capacitance C is given by

1
C = 

1
C1

 + 
1
C2

Question
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If the potential difference across the capacitor that is equivalent to these two capacitors 
is V and the charge stored on each plate is q, then V = q/C.

The potential difference across the combination is the sum of the potential differences 
across the individual capacitors, V = V1 + V2, and each capacitor has charge q on each 
plate. (Before applying any potential difference, the capacitors are uncharged. Then a 
charge of +q induced on one plate of one capacitor will induce a charge of –q on the 
other plate of the capacitor. This will, in turn, induce a charge of +q on one plate of the 
second capacitor and –q on its other plate. Remember that charge is always conserved.) 
Since V1 = q/C1 and V2 = q/C2, then

q/C = q/C1 + q/C2

Dividing each side of the equation by q, we have

1/C = 1/C1 + 1/C2

A similar result applies for any number of capacitors connected in series and

1/C = 1/C1 + 1/C2 + … + 1/Cn

The reciprocal of the combined capacitance equals the sum of the reciprocals of 
the individual capacitances connected in series.

Note that:
» For two identical capacitors in series, the combined capacitance is equal to half 

of the value of each one.
» For capacitors in series, the combined capacitance is always less than the value 

of the smallest individual capacitance.

In Figure 19.6, the two capacitors of capacitance C1 and C2 are connected in parallel. 
We shall show that the combined capacitance C is given by

C = C1 + C2

V

+q1

+q –q

C1

C2

–q1

+q2 –q2

V

C

▲ Figure 19.6 Capacitors in parallel

If the potential difference across the capacitor that is equivalent to the two capacitors in 
parallel is V and the charge stored on each plate is q, then q = CV. The total charge stored 
is the sum of the charges on the individual capacitors, q = q1 + q2, and there is the same 
potential difference V across each capacitor since they are connected in parallel. Since  
q1 = C1V and q2 = C2V, then

CV = C1V + C2V
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3 a A 250 µF capacitor is connected to a 6.0 V supply.

 Calculate the charge stored on one plate of the capacitor.

b The capacitor in a is now disconnected from the supply and connected to an 
uncharged 250 µF capacitor.

i Explain why:

1 the capacitors are in parallel, rather than series

2 the total charge stored by the combination must be the same as the answer to a.

ii Calculate the capacitance of the combination.

iii Calculate the potential difference across each capacitor.

iv Calculate the charge stored on one plate of each capacitor.

19.2 Energy stored in a capacitor
When charging a capacitor, work is done by the battery to move charge on to the 
capacitor, separating positive and negative charges. Energy is transferred from the power 
supply and is stored as electric potential energy in the capacitor.

WORKED EXAMPLE 19C

1 A 50 µF capacitor, connected in parallel with a 10 µF 
capacitor, is connected to a 12 V supply.

 Calculate:
a the total capacitance
b the potential difference across each capacitor
c the charge stored on one plate of each capacitor.

2 A 12 µF capacitor, connected in series with a 6 µF 
capacitor is connected to a 15 V supply. Calculate:
a the combined capacitance
b the charge stored on one plate of each capacitor
c the potential difference across each capacitor.

Answers
1 a Using the equation for capacitors in parallel,

 C = C1 + C2 = 50 + 10 = 60 μF
b The potential difference across each capacitor is 

the same as the potential difference across the 
supply. This is 12 V.

c Using Q = CV, the charge stored on the 50 µF 
capacitor is 50 × 10–6 × 12 = 6.0 × 10–4 C

 The charge stored on the 10 µF capacitor is 
10 × 10–6 × 12 = 1.2 × 10–4 C.

2 a Using the equation for capacitors in series,
 1/C = 1/C1 + 1/C2  = 1/(12 × 10–6) + 1/(6 × 10–6)  

= 2.5 × 105

 Thus C = 4 μF.
b The charge stored by each capacitor is the same 

as the charge stored by the combination, so
 Q = CV = 4 × 10–6 × 15 = 6.0 × 10–5 C
c Using V = Q/C, the potential difference across 

the 12 µF capacitor is (6.0 × 10–5)/(12 × 10–6)  
= 5.0 V

 The potential difference across the 6 µF capacitor 
is (6.0 × 10–5)/(6 × 10–6) = 10.0 V.

 Note that the two potential differences add up to 
the supply voltage.

Question

Dividing each side of the equation by V, we have

C = C1 + C2

The same result applies for any number of capacitors connected in parallel.

C = C1 + C2 + … + Cn

The combined capacitance equals the sum of all the individual capacitances 
in parallel.

Note that the equation for capacitors in series is similar to the equation for resistors in 
parallel, and the equation for capacitors in parallel is similar to the equation for resistors 
in series (see Topic 10.2).
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There are many applications for the ability of capacitors to store energy. Camera flash 
units use a capacitor to store energy. The capacitor takes a few seconds to charge when 
connected to the battery in the camera. Then the energy is discharged very rapidly when 
the capacitor is connected to the flash-bulb to give a short but intense flash.

Since Q = CV, the charge stored on each plate of a capacitor is directly proportional to 
the potential difference across the capacitor (see Figure 19.7).

From the definition of potential difference (Topic 9), the work done to charge the 
capacitor (and therefore, the energy transferred to the capacitor) is the product of the 
potential difference and the charge. That is,

W (and Ep) = VQ

However, while more and more charge is transferred to the capacitor, the potential 
difference is increasing. Suppose the potential difference is V0 when the charge stored 
is Q0. When a further small amount of charge Δq is supplied at an average potential 
difference V0, the energy transferred is given by

ΔEp = V0Δq

which is equal to the area of the hatched strip in Figure 19.7. Similarly, the energy 
transferred when a further charge Δq is added is given by the area of the next strip, 
and so on. If the amount of charge Δq is very small, the strips become very thin 
and their combined areas are just equal to the area between the graph line and the 
horizontal axis. Thus

The energy transferred from the battery when a capacitor is charged is given by 
the area under the graph line when charge (x-axis) is plotted against potential 
difference (y-axis).

Because the graph is a straight line through the origin, this area is just the area of the 
right-angled triangle formed by the line and the charge axis. Thus

Ep = 1
2
QV

This is the expression for the energy transferred from the battery in charging the 
capacitor. This is electric potential energy, and it is released when the capacitor is 
discharged. Since C = Q/V, this expression can be written in different forms.

Ep = 1
2
QV = 1

2
CV 2 = 1

2
(Q2/C)

V0

Q0

0

charge/C

po
te

nt
ia

l d
iff

er
en

ce
/V

∆q

▲ Figure 19.7 Graph of 
potential difference 
against charge for a 
capacitor

WORKED EXAMPLE 19D

1 Calculate the energy stored by a 280 µF capacitor charged to a potential 
difference of 12 V.

2 A camera flash-lamp uses a 5000 µF capacitor which is charged by a 9 V battery. 
The capacitor is then disconnected from the battery. Calculate the energy 
transferred when the capacitor is discharged through the lamp so that the final 
potential difference across its plates is 4.0 V.

Answers
1 Using Ep = 12CV2, Ep = 12 × 280 × 10–6 × 122 = 20 mJ.
2 Energy change = 12CV1

2 – 12CV2
2

 = 12 × 5000 × 10–6 × (92 – 42) = 0.163 J
 Note: (V1

2 – V2
2) is not equal to (V1 – V2)

2 − a common mistake amongst students!
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4 A camera flash-lamp uses a 5000 µF capacitor which is charged by a battery of 

e.m.f. E. When the capacitor fully discharges, the energy transferred is 0.20 J. 
Calculate the charge stored on one plate of the fully charged capacitor.

19.3 Discharging a capacitor
When a battery is connected across a capacitor, as shown on Figure 19.8, electrons 
are transferred so that one plate becomes positively charged and the other, negatively 
charged. The capacitor has become charged.

Sensitive ammeters connected to each plate of the capacitor would indicate electrons 
moving onto the negative plate and at the same time, leaving the positive plate. 
The needles of the meters would both flick in the same direction and return to zero, 
indicating a momentary pulse of current.

The meters would show equal currents for equal short times, indicating that the charge 
on each plate has the same magnitude. The current and the charging process stop when 
the potential difference across the capacitor is equal to the e.m.f. of the battery.

When the battery lead to terminal B is disconnected and joined to terminal A (Figure 19.9) 
so that the battery is no longer in the circuit, both meters give momentary equal flicks in 
the opposite direction to when the capacitor was being charged.

This time, a current in the opposite direction has moved the charge –q from the right-
hand plate to cancel the charge of +q on the left-hand plate. The capacitor has become 
discharged.

Remember that in metal wires the current is carried by free electrons. These move in the 
opposite direction to that of the conventional current (see Topic 9). When the capacitor 
is charged, electrons move from the negative terminal of the battery to the right-hand 
plate of the capacitor, and from the left-hand plate to the positive terminal of the battery. 
When the capacitor is discharged, electrons flow from the negative right-hand plate of 
the capacitor to the positive left-hand plate.

The experiment described using the circuit in Figure 19.9 showed that there is a 
momentary current when a capacitor discharges. A resistor connected in series with the 
capacitor will reduce the current, so that the capacitor discharges more slowly.

The circuit shown in Figure 19.10 can be used to investigate more precisely how a 
capacitor discharges.

A B

A

V0

▲ Figure 19.10 Circuit for investigating capacitor discharge

When the two-way switch is connected to point A, the capacitor will charge until the 
potential difference between its plates is equal to the e.m.f. V0 of the supply. When the 
switch is moved to B, the capacitor will discharge through the resistor. When the switch 
makes contact with B, the current can be recorded at regular intervals of time as the 
capacitor discharges.

A graph of the discharge current against time is shown in Figure 19.11.

0 time/s
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▲ Figure 19.11 Graph of 
current against time for 
capacitor discharge

Question

A B

+q –q

AA

▲ Figure 19.8 Charging a 
capacitor

A A

A B

▲ Figure 19.9 Discharging 
a capacitor
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The current is seen to change rapidly at first, and then more slowly. More detailed analysis 
shows that the decrease is exponential – the current decreases by the same fraction over equal 
time intervals. We shall meet exponential changes again when we deal with the decay of 
radioactive substances (Topic 23.2) and the attenuation of ultrasound and X-rays (Topic 24).

All exponential decay curves have an equation of the form

x = x0e–kt

where x is the quantity that is decaying (and x0 is the value of x at time t = 0), e to three 
decimal places is the number 2.718 (the base of natural logarithms) and k is a constant 
characteristic of the decay. A large value of k means that the decay is rapid, and a small 
value means a slow decay.

The solution for the discharge of a capacitor of capacitance C through a resistor of 
resistance R is of the form

Q = Q0e–t/CR

The graphs of Figures 19.11 and 19.12 have exactly the same shape, and thus the 
equation for the discharge current I in a capacitor may be written as

I = I0e–t/CR

Furthermore, since for a capacitor Q is proportional to V, then the solution for the 
potential difference V as the capacitor discharges can be written as

V = V0e–t/CR

0
time/s

ch
ar

ge
/C

CR

e

0Q

0Q

▲ Figure 19.12 Graph of 
charge against time for 
capacitor discharge

WORKED EXAMPLE 19E

Calculate the time taken to discharge a capacitor of capacitance 2.5 μF through a 
resistance of 0.5 MΩ until the potential difference across it has been reduced by 50%.

Answer
Using V = V0e–t/CR, 0.5 = e–t/(2.5 × 10–6 × 0.5 × 106 ) = e–t/1.25.

Taking natural logarithms of both sides, ln ex = x so

ln 0.5 = –t/1.25, t = 0.693 × 1.25 = 0.87 s

Time constant
As time progresses, the exponential curve in Figure 19.12 gets closer and closer to the 
time axis, but never actually meets it. Thus, it is not possible to quote a time for the 
capacitor to discharge completely.

However, the quantity CR in the decay equation may be used to give an indication of 
whether the decay is fast or slow, as shown in Figure 19.13.
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▲ Figure 19.13 Decay curves for large and small time constants
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CR is called the time constant of the capacitor–resistor circuit.

CR has the units of time, and is measured in seconds.

We can easily show that CR has units of time. From C = Q/V and R = V/I, then CR = Q/I. 
Since charge Q is in coulombs and current I is in amperes, and one ampere is equal to 
one coulomb per second, Q/I is in seconds.

To find the charge Q on the capacitor plates after a time t = CR, we substitute in the 
exponential decay equation

Q = Q0e–CR/CR = Q0e–1 = Q0 /e = Q0 /2.718

Thus

The time constant is the time for the charge to have decreased to 1/e (or 1/2.718) of 
its initial value.

Remember that the basic expression for the decay can be in terms of charge on one plate 
or current in the connecting leads or potential difference across the capacitor. So, time 
constant can be defined in terms of charge, current or potential difference.

In one time constant the charge stored by the capacitor drops to 1/e (roughly one-third) 
of its initial value. During the next time constant it will drop by the same ratio, to 1/e2, 
about one-ninth of the value at the beginning of the decay.

WORKED EXAMPLE 19F

A 250 µF capacitor is connected to a 12 V supply, and is 
then discharged through a 200 kΩ resistor. Calculate:
a the initial charge stored by the capacitor
b the initial discharge current
c the value of the time constant
d the charge on the plates after 100 s
e  the time at which the remaining charge is 

1.8 × 10–3 C.

Answers
a  From Q = CV, we have Q = 250 × 10–6 × 12 = 

3.0 × 10–3 C.

b  From I = V/R, we have I = 12/(200 × 103) = 
6.0 × 10–5 A.

c CR = 250 × 10–6 × 200 × 103 = 50 s.
d After 50 s, the charge on the plates is
  Q0/e = 3.0 × 10–3/2.718 = 1.1 × 10–3 C; after a 

further 50 s, the charge is 1.1 × 10–3/2.718 = 
4.1 × 10–4 C.

e Using Q = Q0e–t/CR, 1.8 × 10–3 = 3.0 × 10–3e–t/50, 
 or 0.60 = e–t/50.
  Taking natural logarithms of both sides, 

ln 0.60 = –0.510 = –t/50, or t = 26 s.

5 A 12.0 µF capacitor is charged from a 20 V battery, and is then discharged through a 
0.50 MΩ resistor. Calculate:

a the initial charge on the capacitor

b the charge on the capacitor 2.8 s after the discharge starts

c the potential difference across the capacitor at this time.

Uses of capacitors
Some uses of capacitors have already been outlined. As will be seen in Topic 21.2, 
capacitors may also be used in a circuit to give a smoother output p.d and reduce the 
‘ripple’ on rectified current or voltage.

Question
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END OF TOPIC QUESTIONS

1 Fig. 19.14 shows an arrangement of capacitors.
a Calculate the total capacitance of this arrangement.
b The 4 µF capacitor is disconnected. Calculate the new capacitance.

4 µF

3 µF

2 µF

▲ Figure 19.14

2 A 15 µF capacitor is charged from a 6.0 V battery.
a Calculate:

i the electric potential energy stored by the capacitor,
ii the charge stored on each plate of the capacitor.

b The charged capacitor is discharged through a 200 kΩ resistor. Calculate:
i the initial discharge current,
ii the time constant,
iii the potential difference across the capacitor after the capacitor has been 

discharging for 4.8 s.

3 a  i Define capacitance. [1]
 ii A capacitor is made of two metal plates, insulated from one another, as 

shown in Fig. 19.15.
 Explain why the capacitor is said to store energy but not charge. [4]

SUMMARY

» A capacitor stores energy. A capacitor allows the 
storage of separated charges.

» The capacitance C of an isolated conductor is given 
by C = Q/V, where Q is the charge on the conductor 
and V is its potential.

» The capacitance C of a parallel plate capacitor 
is given by C = Q/V, where Q is the charge on 
one plate of the capacitor and V is the potential 
difference V between its plates.

» The unit of capacitance, the farad (F), is one 
coulomb per volt.

» The energy stored in a charged capacitor is given 
by E = 1

2
QV = 1

2
CV 2 = 12Q 2/C.

» The area under a potential–charge graph is equal 
to the energy stored in a capacitor.

» The equivalent capacitance C of two or more 
capacitors connected in series is given by 
1/C = 1/C1 + 1/C2 +  ...

» The equivalent capacitance C of two or more 
capacitors connected in parallel is given by 
C = C1 + C2 + ...

» When a charged capacitor discharges, the charge 
on the plates decays exponentially. The equation 
for the decay is Q = Q0e–t/CR where Q0 is the initial 
charge.

» The same decay equation x = x0e
–t/CR applies to 

the charge Q on one plate of the capacitor, to the 
potential difference V across the capacitor and to 
the discharge current I.

» The time constant τ of the circuit, given by τ = CR, 
is the time for the quantity Q, V or I to decay to 1/e 
of its initial value.

» The time taken for the quantity Q, V or I to decay 
to any later value can be found by re-arranging the 
equation and taking logarithms to the base e (ln).

metal
plateinsulation

▲ Figure 19.15

482807_19_CI_AS_Phy_SB_3e_302-313.indd   312 30/05/20   6:57 PM



313

19

End of topic questions

b Three uncharged capacitors X, Y and Z, each of capacitance 12 µF, are 
connected as shown in Fig. 19.16.

A B

X

12 µF

Y

12 µF

Z

12 µF

▲ Figure 19.16

 A potential difference of 9.0 V is applied between points A and B.
i Calculate the combined capacitance of the capacitors X, Y and Z. [2]
ii Explain why, when the potential difference of 9.0 V is applied, the  

charge on one plate of capacitor X is 72 µC. [2]
iii Determine:
 the potential difference across capacitor X, [1]
 the charge on one plate of capacitor Y. [2]

Cambridge International AS and A Level Physics (9702) Paper 42 Q5 Oct/Nov 2012

4 A capacitor of capacitance 350 µF and a resistor of resistance R are connected in to 
the circuit shown in Fig. 19.17. The variation with time of the potential difference V 
across the capacitor is shown in Fig. 19.18.

 When the switch is in position A, the capacitor is charged to a potential difference 
of 12 V. The switch is then moved to position B so that, at time t = 0, the capacitor 
begins to discharge. The variation with time t of the potential difference V across 
the capacitor is shown in Fig. 19.18.
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a For the discharge of the capacitor through the resistor:
i state what is meant by the time constant,
ii use data from Fig. 19.18 to determine the value of the time constant,
iii use your answer in ii to determine the resistance R.

b A second resistor, also of resistance R, is connected in series with the resistor 
in Fig. 19.17. The capacitor is re-charged and then allowed to discharge.
i By reference to your answer in a ii, state the new value of the time constant.
ii On a copy of Fig. 19.18, sketch for this second discharge, the variation with time 

t of the potential difference V across the capacitor for time t = 0 to time t = 18 s.

▲ Figure 19.18

A

B

350 µF

12 V

R

▲ Figure 19.17
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Magnetic fields 20 

Starting points
★	 Identify	magnetic	materials.
★	 Magnets	create	a	magnetic	field	around	them.
★	 Magnetic	fields	are	produced	by	current-carrying	conductors	and	coils.
★	 The	law	of	magnets	–	like	poles	repel,	unlike	poles	attract.

Learning outcomes
By	the	end	of	this	topic,	you	will	be	able	to:

20.1 Concept of a magnetic field
1	 understand	that	a	magnetic	field	is	an	

example	of	a	field	of	force	produced	either	
by	moving	charges	or	by	permanent	
magnets

2	 represent	a	magnetic	field	by	field	lines

20.2 Force on a current-carrying conductor
1	 understand	that	a	force	might	act	on	a	

current-carrying	conductor	placed	in	a	
magnetic	field

2	 recall	and	use	the	equation F = BIL	sin	θ,	with	
directions	as	interpreted	by	Fleming’s	left-
hand	rule

3	 define	magnetic	flux	density	as	the	force	
acting	per	unit	current	per	unit	length	on	a	
wire	placed	at	right	angles	to	the	magnetic	
field

20.3 Force on a moving charge
1	 determine	the	direction	of	the	force	on	a	

charge	moving	in	a	magnetic	field
2	 recall	and	use	F =	BQv sin	θ
3	 understand	the	origin	of	the	Hall	voltage	and	

derive	and	use	the	expression	VH	=	BI/(ntq)	
where	t	=	thickness

4	 understand	the	use	of	a	Hall	probe	to	
measure	magnetic	flux	density

5	 describe	the	motion	of	a	charged	particle	
moving	in	a	uniform	magnetic	field	
perpendicular	to	the	direction	of	motion	of	
the	particle

6	 explain	how	electric	and	magnetic	fields	can	
be	used	in	velocity	selection

20.4 Magnetic fields due to currents
1	 sketch	magnetic	field	patterns	due	to	the	

currents	in	a	long	straight	wire,	a	flat	
circular	coil	and	a	long	solenoid

2	 understand	that	the	magnetic	field	due	to	
the	current	in	a	solenoid	is	increased	by	a	
ferrous	core

3	 explain	the	origin	of	the	forces	between	
current-carrying	conductors	and	determine	
the	direction	of	the	forces

20.5 Electromagnetic induction
1	 define	magnetic	flux	as	the	product	of	

the	magnetic	flux	density	and	the	cross-
sectional	area	perpendicular	to	the	direction	
of	the	magnetic	flux	density

2	 	recall	and	use Φ =	BA
3	 	understand	and	use	the	concept	of	magnetic	

flux	linkage
4	 understand	and	explain	experiments	that	

demonstrate:
	 •	 	that	a	changing	magnetic	flux	can	induce	

an	e.m.f.	in	a	circuit
	 •	 	that	the	induced	e.m.f.	is	in	such	a	direction	

as	to	oppose	the	change	producing	it
	 •	 	the	factors	affecting	the	magnitude	of	the	

induced	e.m.f.
5	 recall	and	use	Faraday’s	law	and	Lenz’s	law	

of	electromagnetic	induction
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20.1 Concept of a magnetic field
Some of the properties of magnets have been known for many centuries. 
The ancient Greeks discovered an iron ore called lodestone which, when hung from 
a thread, would come to rest always pointing in the same direction. This was the 
basis of the magnetic compass which has been in use since about 1500bce as a means 
of navigation.

The magnetic compass is dependent on the fact that a freely suspended magnet will 
come to rest pointing north–south. The ends of the magnet are said to be poles.  
Th pole pointing to the north is referred to as the north-seeking pole (the north pole 
or N-pole) and the other, the south-seeking pole (the south pole or S-pole). It is now 
known that a compass behaves in this way because the Earth is itself a magnet.

Magnets exert forces on each other. These forces of either attraction or repulsion are 
used in many children’s toys, in door catches and ‘fridge magnets’. The effects of the 
forces may be summarised in the law of magnets.

Like poles repel.

Unlike poles attract.

The law of magnets implies that around any magnet, there is a region where a magnetic 
pole will experience a force. This region is known as a magnetic field.

A magnetic field is a region of space where a magnetic pole experiences a force.

Magnetic fields are not visible but they may be represented by lines of magnetic force 
or magnetic field lines. We will return later in this topic to a fuller understanding of 
how the density or relative spacing of the field lines can be related to a quantity called 
magnetic ‘flux’. A simple way of imagining magnetic field lines is to think of one such 
line as the direction in which a free magnetic north pole would move if placed in the 
field. Magnetic field lines may be plotted using a small compass (a plotting compass) or 
by the use of iron filings and a compass (Figure 20.1).

▲	 Figure 20.1	The	iron	filings	line	up	with	the	magnetic	field	of	the	bar	magnet	which	is	
under	the	sheet	of	paper.	A	plotting	compass	will	give	the	direction	of	the	field.
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The magnetic field lines of a bar magnet are shown in Figure 20.2.

Effects due to the Earth’s magnetic field have not been included since the Earth’s field 
is relatively weak and would be of significance only at some distance from the magnet. 
It is important to realise that, although the magnetic field has been drawn in two 
dimensions, the actual magnetic field is three-dimensional.

For any magnetic field:
» the magnetic field lines start at a north pole and end at a south pole
» the arrow on each line shows the direction in which a free magnetic north pole 

would move if placed at that point on the line
» the magnetic field lines are smooth curves which never touch or cross
» the strength of the magnetic field is indicated by the closeness of the lines – the 

closer the lines, the stronger the magnetic field.

It can be seen that these properties are very similar to those for electric field lines (Topic 18.1).

Figure 20.3 illustrates the magnetic field pattern between the north pole of one magnet 
and the south pole of another. This pattern is similar to that produced between the poles 
of a horseshoe magnet.

NS

▲	 Figure 20.3	Magnetic	field	pattern	between	a	north	and	south	pole

Figure 20.4 shows the magnetic field between the north poles of two magnets. The magnetic 
field due to one magnet opposes that due to the other. The field lines cannot cross and 
consequently there is a point X, known as a neutral point, where there is no resultant 
magnetic field because the two fields are equal in magnitude but opposite in direction.

NXN

▲	 Figure 20.4	Magnetic	field	pattern	between	two	north	poles

N S

▲	 Figure 20.2	Magnetic	
field	pattern	of	a	bar	
magnet

WORKED EXAMPLE 20A

A circular magnet is made with its north pole at 
the centre, separated from the surrounding circular 
south pole by an air gap. Draw the magnetic field 
lines in the gap (Figure 20.5).

Answer

S

magnetic
field

air gap

N

▲	 Figure 20.5
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1 Draw a diagram to illustrate the magnetic field between the 

south poles of two magnets.

2 Two bar magnets are placed on a horizontal surface  
(Figure 20.6).

 Draw the two magnets, and sketch the magnetic field lines 
around them. On your diagram, mark the position of  
any neutral points (points where there is no resultant  
magnetic field).

Magnetic	effect	of	an	electric	current
The earliest discovery of the magnetic effect of an electric current was made in 1820 by 
Oersted, a Danish physicist (Figure 20.7).

He noticed that a compass was deflected when brought near to a wire carrying an 
electric current. It is now known that all electric currents produce magnetic fields. 
The size and shape of the magnetic field depends on the size of the current and 
the shape (configuration) of the conductor through which the current is travelling. 
The shape of the fields will be considered in more detail in Topic 20.4. Hence, a fuller 
understanding of a magnetic field is that:

A magnetic field is a region of space where a force is experienced either by moving 
charges or by permanent magnets.

20.2 Force on a current-carrying conductor
We have seen that the plotting of lines of magnetic force gives the direction and shape 
of the magnetic field. Also, the distance between the lines indicates the strength of the 
field. However, the strength of the magnetic field has not been defined. Physics is the 
science of measurement and, consequently, the topic would not be complete without 
defining and measuring magnetic field strength. Magnetic field strength is defined 
through a study of the force on a current-carrying conductor – the motor effect.

The	motor	effect
The interaction of the magnetic fields produced by two magnets causes forces of 
attraction or repulsion between the two. A current-carrying conductor produces a 
magnetic field around the conductor (see Topic 20.4). If a conductor is placed between 
the poles of a permanent magnet and a current is passed through the conductor, the 
magnetic fields of the current-carrying conductor and the magnet will interact, causing 
forces between them. This is illustrated in Figure 20.8.

direction
of force

SN

▲	 Figure 20.8	The	interacting	magnetic	fields	of	a	current-carrying	conductor	and	the	poles	
of	a	magnet

▲	 Figure 20.7	Hans	
Christian	Oersted

S N

SN

▲	Figure 20.6

Questions
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The existence of the force may be demonstrated with the apparatus shown in Figure 20.9.

N

S

strip of
aluminium
foil

▲	 Figure 20.9	Demonstrating	the	motor	effect	acting	on	a	piece	of	aluminium

The strip of aluminium foil is held loosely between the poles of a horseshoe magnet so 
that the foil is at right angles to the magnetic field. When the current is switched on, the 
foil jumps and becomes taut, showing that a force is acting on it. The direction of the 
force, known as the electromagnetic force, depends on the directions of the magnetic 
field and of the current. This phenomenon, when a current-carrying conductor is at an 
angle to a magnetic field, is called the motor effect and is used in motors.

The direction of the force relative to the directions of the current and the magnetic field 
may be predicted using Fleming’s left-hand rule. This is illustrated in Figure 20.10.

thuMb
Motion
or force

first finger
Field

Force

Field

Current

seCond finger
Current

▲	 Figure 20.10	Fleming’s	left-hand	rule

If the first two fingers and thumb of the left hand are held at right angles to one 
another with the First finger in the direction of the Field and the seCond finger 
in the direction of the Current, then the thuMb gives the direction of the force 
or Motion.

However, it must be remembered that the second finger is used to indicate the direction 
of the conventional current. Note that, if the conductor is held fixed, motion will not be 
seen but, nevertheless, there will be an electromagnetic force.

Experiments show that electromagnetic force F is proportional to the current I and 
proportional to the length L of conductor in the magnetic field. The force also depends 
on the angle θ between the conductor and the direction of the magnetic field. Hence 
the expression

F ∝ IL sin θ

is derived.

482807_20_CI_AS_Phy_SB_3e_314-339.indd   318 30/05/20   8:39 PM



319

20.2 Force on a current-carrying conductor

20
If the wire and the field lines are parallel to each other, θ = 0 and sin θ is equal to 0. 
Hence there is no force exerted on the conductor if it is parallel to the magnetic field.

The expression can be re-written as

F = BIL sin θ

where B is a constant. If the magnetic field is uniform, the constant B depends on the 
strength of the magnet and, if stronger magnets are used, the constant has a greater 
value. The equation can, therefore, be used as the defining equation for magnetic field 
strength. Magnetic field strength is more correctly called magnetic flux density.

The equation can be rewritten as

B = 
F

IL sin θ

So,

Magnetic flux density B is numerically equal to the force per unit current per unit 
length on a straight wire placed at right angles to a uniform magnetic field,

The magnetic flux density B is measured in tesla (T). As we shall see in Topic 20.5, an 
alternative name for this unit is weber per square metre (Wb m−2).

One tesla is the uniform magnetic flux density which, acting normally to a long 
straight wire carrying a current of 1 ampere, causes a force per unit length of 
1 N m−1 on the conductor.

Since force is measured in newtons, length in metres and current in amperes, it can be 
derived from the defining equation for magnetic flux density that the tesla may also 
be expressed as N m−1 A−1. The unit involves force which is a vector quantity and thus 
magnetic flux density is also a vector.

When using the equation F = BIL sin θ, it is sometimes helpful to think of the term B sin θ 
as being the component of the magnetic flux density which is at right angles (or normal) 
to the conductor (see Figure 20.11).

component B sin q
normal to
conductor

magnetic field,
strength B

current-carrying
conductor

q

▲	 Figure 20.11	B	sin	θ	is	the	component	of	the	magnetic	field	which	is	normal		
to	the	conductor.

The tesla is a large unit for the measurement of flux density. A very strong magnet may 
have a flux density between its poles of a few teslas. The magnetic flux density due to 
the Earth in the UK is about 44 µT at an angle of 66° to the horizontal.
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WORKED EXAMPLE 20B

 The horizontal component of the Earth’s magnetic flux density is 1.8 × 10−5 T. 
The current in a horizontal cable is 120 A. Calculate, for this cable:
a the maximum force per unit length
b the minimum force per unit length.
In each case, state the angle between the cable and the magnetic field.

Answers
a Force per unit length = F/L = BI sin θ
 Force per unit length is a maximum when θ = 90° and sin θ = 1.
 Force per unit length = 1.8 × 10−5 × 120 = 2.16 × 10−3 N m−1

 Maximum force per unit length = 2.16 × 10−3 N m−1 when the cable is at  
right angles to the field.

b Force per unit length is a minimum when θ = 0 and sin θ = 0. Minimum force per 
unit length = 0 when the cable is along the direction of the field.

3 The effective length of the filament in a light bulb is 3.0 cm and, for normal brightness, 
the current in the filament is 0.40 A. Calculate the maximum electromagnetic force on 
the filament when in the Earth’s magnetic field of flux density 42 µT.

4 A straight conductor carrying a current of 7.5 A is situated in a uniform magnetic 
field of flux density 4.0 mT. Calculate the electromagnetic force per unit length of the 
conductor when the angle between the conductor and the field is:

a 90°

b 60°.

20.3 Force on a moving charge
An electric current is charge in motion. Since charge is always associated with particles, 
then the current in a conductor is a movement of charged particles. If a current-carrying 
conductor is placed in a magnetic field, it may experience a force depending on the angle 
between the field and the conductor. The force arises from the force on the individual 
moving charged particles in the conductor.

It has been shown that a conductor of length L carrying a current I at an angle θ to a 
uniform magnetic field of flux density B experiences a force F given by

F = BIL sin θ

If there are n charged particles in a length L of the conductor, each carrying a charge 
q, that pass a point in the conductor in time t, then the current I in the conductor is 
given by

I = 
nq
t

and the speed v of charged particles is given by v = L
t
. Hence,

F = B × (nq
t ) × L sin θ

and

F = Bnqv sin θ

This force is the force on n charged particles. Therefore,

The force on a particle of charge q moving at speed v at an angle θ to a uniform 
magnetic field of flux density B is given by F = Bqv sin θ.

Questions
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The direction of the force will be given by Fleming’s left-hand rule (see Figure 20.10). 
However, it must be remembered that the second finger is used to indicate the direction 
of the conventional current. If the particles are positively charged, then the second finger 
is placed in the same direction as the velocity. However, if the particles are negatively 
charged (e.g. electrons), the finger must point in the opposite direction to the velocity.

Consider a positively charged particle of mass m carrying charge q and moving with 
velocity v as shown in Figure 20.12.

path of particle,
charge +q
mass m
velocity v

uniform magnetic
field B out of page

▲	 Figure 20.12	Path	of	a	charged	particle	in	a	magnetic	field

The particle enters a uniform magnetic field of flux density B which is normal to the 
direction of motion of the particle. As the particle enters the field, it will experience a 
force normal to its direction. This force will not change the speed of the particle but it will 
change its direction of motion. As the particle moves through the field, the force will remain 
constant, since the speed has not changed, and it will always be normal to the direction of 
motion. The particle will, therefore, move in an arc of a circle of radius r (see Topic 12.2).

The force F = Bqv sin θ (in this case, sin θ = 1), provides the centripetal force for the 
circular motion. Hence,

centripetal force = mv2/r = Bqv

Re-arranging,

radius of path = r = 
(mv)
(Bq)

The importance of this equation is that, if the speed of the particle and the radius of its 
path are known, then the specific charge, i.e. the ratio of charge to mass q/m, can be found. 
Then, if the charge on the particle is known, its mass may be calculated. The technique 
is also used in nuclear research to identify some of the fundamental particles. The tracks 
of charged particles are made visible in a bubble chamber (Figure 20.13). Analysing these 
tracks gives information as to the sign of the charge on the particle and its specific charge.

▲	 Figure 20.13	Tracks	of	particles	produced	in	a	bubble	chamber
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WORKED EXAMPLE 20C

 Electrons are accelerated to a speed of 9.1 × 106 m s−1. They then pass into a region of 
uniform magnetic flux of flux density 0.50 mT. The path of the electrons in the field 
is a circle with a radius 10.2 cm. Calculate:
a the specific charge of the electron
b the mass of the electron, assuming the charge on the electron is 1.6 × 10−19 C.

Answers
a  e/m = v/Br

  = 9.1 × 106/(0.50 × 10−3 × 0.102)
  = 1.8 × 1011 C kg−1

b  e/m = 1.8 × 1011 = 1.6 × 10 × −19/m
   m = 9.0 × 10−31 kg

5 Electrons are accelerated through a potential difference of 250 V. They then pass into 
a region of uniform magnetic flux of flux density 0.58 mT. The path of the electrons 
is normal to the magnetic field. Given that the charge on the electron is 1.6 × 10−19 C 
and its mass is 9.1 × 10−31 kg, calculate:

a the speed of the accelerated electron

b the radius of the circular path in the magnetic field.

Question

EXTENSION

Specific	charge	of	the	electron:	the	fine-beam	tube
Specific charge is the name given to the ratio of the charge q on a particle and its 
mass m.

specific charge = q/m

As already mentioned, specific charge can give us information about a particle and, if 
the charge on the particle is known, then the mass of the particle can be determined.

The charge on the electron is 1.60 × 10−19 C. Determination of the specific charge on 
the electron enables us to obtain a value for its mass.

We have seen above that a particle of mass m and charge q moving with speed v at right 
angles to a uniform magnetic field of flux density B experiences a force F given by

F = Bqv

The direction of this force is given by Fleming’s left-hand rule and is always normal 
to the velocity, giving rise to circular motion

Bqv = mv2/r

Re-arranging the terms,

q/m = v/Br

The ratio charge/mass (e/me) for an 
electron – its specific charge – may be 
determined using a fine-beam tube, as 
shown in Figure 20.14.

The path of electrons is made visible by 
having low-pressure gas in the tube and,  
thus, the radius of the orbit may be 

luminous
path of
electron
beam

low-pressure
gas Helmholtz

coils providing
magnetic field B
perpendicular
to beam

▲	Figure 20.14	Fine-beam	tube
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measured. By accelerating the electrons through a known potential difference 
V, their speed v on entry into the region of the magnetic field may be calculated 
(see Motion of a charged particle in an electric field in Topic 18.2) using

eV = 1
2
 mev

2

The magnetic field is provided by a pair of current-carrying coils (Helmholtz coils, 
see Figure 20.27).

Combining the equations e/me = v/Br and eV = 1
2
 mev

2

then

specific charge on electron e/me = 2V/B2r2.

Values for the charge e and mass me are usually given as

charge e = 1.60 × 10−19 C
mass me = 9.11 × 10−31 kg

It is of interest to rotate the fine-beam tube slightly, so 
that the velocity of the electrons is not normal to the 
magnetic field. In this case, the path of the electrons is 
seen to be a helix (rather like the coils of a spring). The 
component of the velocity normal to the field gives rise 
to circular motion. However, there is also a component 
of velocity along the direction of the field. There is no 
force on the electrons resulting from this component 
of velocity. Consequently, the electrons execute 
circular motion and move in a direction normal to the 
plane of the circle. The circle is ‘pulled out’ into a helix 
(Figure 20.15). The helical path is an important aspect 
of the focusing of electron beams by magnetic fields in 
an electron microscope (Figure 20.16).

▲	Figure 20.16	Laboratory	
technician	using	an	
electron	microscope

Velocity	selection	of	charged	particles
We have seen (Topic 18.2) that when particles of mass m and charge +q enter an electric 
field of field strength E, there is a force FE on the particle given by

FE = qE

If the velocity of the particles before entry into the field is v and is at right angles to the 
field lines (Figure 20.17), the particles will follow a parabolic path as they pass through 
the field.

path of particle,
charge +q
mass m
velocity v

region of uniform
electric field,
strength E

▲	 Figure 20.17

Now suppose that a uniform magnetic field acts in the same region as the electric field. 
If this field acts downwards into the plane of the page, then, by Fleming’s left-hand rule, 

velocity component
along field

▲	 Figure 20.15	Electrons	
moving	in	a	helix
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a force will act on the charged particle in the direction opposite to the force due to the 
electric field. The magnitude FB of this force is given by

FB = Bqv

where B is the flux density of the magnetic field.

If the magnitude of one of the two fields is adjusted, then a situation can arise where the 
two forces, FE and FB, are equal in magnitude but opposite in direction. Thus

Bqv = qE

and

v = E/B

For the value of the velocity given by E/B, the particles will not be deflected, as shown in 
Figure 20.18.

v = —E
B

slit
v > —E

B

v < —E
B

path of
charged
particles

region of electric field
(down the page) and
magnetic field (into the
page)

▲	 Figure 20.18	Velocity	selector

However since the magnetic force is speed-dependent, charged particles with any other 
velocities will be deflected. If a parallel beam of particles enters the field then all the particles 
passing undeviated through the slit will have the same velocity. Note that the mass does not 
come into the equation for FB or FE and so, particles with a different mass (but the same charge) 
will all pass undeviated through the region of the fields if they satisfy the condition v = E/B.

The arrangement shown in Figure 20.18 is known as a velocity selector. Velocity 
selectors are very important in the study of ions. Frequently, the production of the ions 
gives rise to different speeds but to carry out investigations on the ions, the ions must 
have one speed only.

If some ions all have the same speed – achieved using a velocity selector – then the 
radius of the path of an ion in a magnetic field is dependent on the ratio of charge and 
mass of the ion. Hence, ions can be identified according to their charge-to-mass ratios, 
and importantly, knowing the charge on the ion, the mass of the ion can be determined. 
Instruments using these principles to determine mass are referred to as mass spectrometers.

WORKED EXAMPLE 20D

It is required to select charged ions which have a speed of 6.3 × 106 m s−1. The electric 
field strength in the velocity selector is 4.8 × 104  V m−1. Calculate the magnetic flux 
density required.

Answer

v = E/B

B = (4.8 × 104)/(6.3 × 106)

    = 7.6 × 10−3 T
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6 Singly charged ions pass undeviated through a velocity selector. The electric field 

strength in the selector is 4.2 × 104 V m−1 and the magnetic flux density is 8.4 × 10−3 T. 
Calculate the selected speed of the ions.

The	Hall	effect
Consider a thin slice of a conductor which is normal to a magnetic field, as illustrated in 
Figure 20.19.

magnetic field

current

current

t

d++++++++

– – – – – – – –

▲	 Figure 20.19	The	Hall	effect

When there is a current in the conductor in the direction shown, charge carriers 
(electrons in a metal) will be moving at right angles to the magnetic field. They will 
experience a force which will tend to make them move to one side of the conductor. 
A potential difference known as the Hall voltage VH will develop across the conductor. 
The Hall voltage does not increase indefinitely but reaches a constant value when the 
force on the charge carrier due to the magnetic field is equal to the force due to the 
electric field set up as a result of the Hall voltage.

If the distance between the two faces with the potential difference VH is d (see  
Figure 20.19), then the electric field strength E between these two faces will be given  
by E = VH/d (see Topic 18.2). The force FE acting on each charge carrier will be

FE = q × (VH/d)

where q is the charge on the charge carrier.

The force FB on the charge carrier due to the magnetic field of flux density B is given by 
FB = Bqv where v is the drift speed of the charge carriers.

When the electric field has been established, charge carriers will pass undeviated 
through the slice and FE = FB,

q × (VH/d) = Bqv

VH/d = Bv

Now, the drift speed v of the charge carriers is given, in terms of the current I in the 
slice, by the expression (see Topic 9.1)

I = Anvq

where A is the area of cross-section of the slice and n is the number density of the charge 
carriers (number of charge carriers per unit volume).

Since the area A is equal to td where t is the thickness of the slice (see Figure 20.19), then

VH/d = B × (I/tdnq)

and

Hall voltage VH = 
BI

(ntq)

Question
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7 A piece of aluminium foil is 0.10 mm thick. The current in the foil is 4.5 A. 
Aluminium has 6.0 × 1028 free electrons per cubic metre.

 A uniform magnetic field of flux density 85 mT is normal to the slice. Calculate the 
Hall voltage that is generated. (Electronic charge = 1.6 × 10−19 C.)

20.4 Magnetic fields due to currents
The magnetic field due to a long straight wire may be plotted using the apparatus 
illustrated in Figure 20.21. Note that the current must be quite large (about 5 A). 
Iron filings are sprinkled on to the horizontal board and a plotting compass is used 
to determine the direction of the field.

Figure 20.22 shows the field pattern due to a long straight current-carrying wire. 
The lines are concentric circles centred on the middle of the wire. The separation of the 
lines increases with distance from the wire, indicating that the field is decreasing in 
strength. The direction of the magnetic field may be found using the right-hand rule as 
illustrated in Figure 20.23.

Question

The size of the Hall voltage depends on the material and thickness of the conductor, 
the current in the sample and the magnetic flux density. The number density of 
charge carriers is very large in metals and, consequently, the Hall voltage is very 
small. However, with semiconductors, the number density is very much reduced and, 
therefore, detectable and measurable Hall voltages are possible. In fact, the Hall effect is 
used to study semiconductor materials and identify (from the sign of the Hall voltage) 
whether the charge carriers are positive or negative.

If the current is kept constant, then the Hall voltage across a sample will be proportional 
to the magnetic flux density. The Hall effect thus provides a means by which flux 
densities may be measured, using a Hall probe.

Measuring	magnetic	flux	density
The Hall probe apparatus used in school or college laboratories consists of a thin 
slice of a semiconductor material which is placed with its plane at right angles to 
the direction of the magnetic field. The control unit is arranged to pass a certain 
current through the semiconductor slice. The Hall voltage, which is proportional 
to the magnetic flux density, is read off on an analogue or digital meter, which is 
calibrated in units of magnetic flux density (tesla). The arrangement is illustrated in 
Figure 20.20.

Note that the Hall voltage is dependent on the angle between the magnetic field and the 
plane of the Hall probe. Before commencing the taking of readings, the probe should be 
placed in the field and rotated to obtain the maximum reading on the meter. The plane 
of the Hall probe is then at right angles to the magnetic field.

▲	Figure 20.20	Hall	probe	
apparatus

WORKED EXAMPLE 20E

A Hall probe is placed at right angles to a uniform 
magnetic field. A Hall voltage of 82 mV is measured.

The probe is adjusted so that the angle its plane makes 
with the magnetic field is 35°.

Calculate the value of the Hall voltage.

Answer
The component of the magnetic flux density B that is 
normal to the plane is B sin 35°.

Since Hall voltage is proportional to the magnetic flux 
density normal to the plane of the probe, then

Hall voltage = 82 sin 35° = 47 mV
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Imagine holding the conductor in the right hand with the thumb pointing in 
the direction of the conventional current. The direction of the fingers gives the 
direction of the magnetic field.

 

Similar apparatus to that in Figure 20.21 may be used to investigate the shapes of the 
magnetic field due to a flat coil and to a solenoid (a long coil). Figure 20.24 illustrates 
the magnetic field pattern due to a flat coil. The field has been drawn in a plane normal 
to the coil and through its centre.

A solenoid may be thought of as being made up of many flat coils placed side-by-side. 
The magnetic field pattern of a long solenoid (that is, a coil which is long in comparison 
with its diameter) is shown in Figure 20.25.magnetic

field

current

▲	 Figure 20.23	
The	right-hand	
rule

d.c. supply (5 A)

iron filings

plotting
compass

thick insulated
copper wire

▲	 Figure 20.21	Apparatus	to	plot	the	
magnetic	field	due	to	a	long	wire

×

▲	 Figure 20.22	Magnetic	
field	pattern	due	to	a	
long	straight	wire

The field lines are parallel and equally spaced over the centre section of the solenoid, 
indicating that the field is uniform. The field lines spread out towards the ends. The 
strength of the magnetic field at each end is one-half that at the centre. The direction 
of the magnetic field in a flat coil and in a solenoid may be found using the right-hand 
grip rule, as illustrated in Figure 20.26.

direction
of magnetic
field

NS

▲	 Figure 20.26	The	right-hand	grip	rule

Grasp the coil or solenoid in the right hand with the fingers pointing in the direction 
of the conventional current. The thumb gives the direction of the magnetic field.

▲	 Figure 20.24	Magnetic	
field	pattern	due	to	a	
flat	coil

▲	 Figure 20.25	Magnetic	field	pattern	due	to	a	solenoid
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The magnetic north end of the coil or solenoid is the end from which the lines of 
magnetic force are emerging. Note the similarities and, more importantly, the differences 
between this rule and the right-hand rule for the long straight wire (Figure 20.23).

Uniform magnetic fields are of importance in the study of charged particles, such 
as when using a velocity selector (see Topic 20.3) or when using a fine-beam tube to 
determine the ratio e/m.

A uniform field is produced in a solenoid but this field is inside the solenoid and 
consequently, it may be difficult to make observations and to take measurements. 
This problem is overcome by using Helmholtz coils. These are two identical flat coils, 
with the same current in each. The coils are positioned so that their planes are parallel 
and separated by a distance equal to the radius of either coil. The coils and their 
resultant magnetic field are illustrated in Figure 20.27.

WORKED EXAMPLE 20F

Two long straight wires, of circular cross-section, are each  
carrying the same current directly away from you, down  
into the page. Draw the magnetic field due to the two  
current-carrying wires.

Answer
The solution is shown in Figure 20.28. ▲	Figure 20.28

8 Draw magnetic field patterns, one in each case to represent:

a a uniform field

b a field which is decreasing in strength in the direction of the field

c a field which is increasing in strength along the direction of the field.

9 Draw a diagram of the magnetic field due to two long straight wires when the 
currents in the two wires are in opposite directions.

Electromagnets	and	their	uses
The strength of the magnetic field due to a flat coil or a solenoid may be increased by 
winding the coil on a bar of soft iron. The bar is said to be the core of the coil. The 
iron is referred to as being ‘soft’ because it can be magnetised and demagnetised easily. 
With such a core (ferrous core), the strength of the magnetic field may be increased by 
up to 1000 times. With ferrous alloys (iron alloyed with cobalt or nickel), the field may 
be 104 times stronger. Magnets such as these are called electromagnets. Electromagnets 
have many uses because, unlike a permanent magnet, the magnetic field can be 
switched off by switching off the current in the coil.

Comparing	the	effects	of	fields
We can summarise the effects of the different sorts of fields on masses, charges and current-
carrying conductors. Although, as we have seen, there are close analogies between magnetic, 
gravitational and electric fields, there are some ways in which they behave very differently.

Start with the effect of a gravitational field on a mass. Because masses always attract 
each other, a mass placed in a gravitational field will always move in the direction of the 
field, from a position of higher potential to lower potential. For a field produced by a 
point mass, the field strength obeys an inverse square law relationship, and the potential 
obeys a reciprocal relationship with distance from the source of the field.

Electric fields are like gravitational fields in that, for a field produced by a point charge, 
the field strength is also given by the inverse square law, and the potential by a reciprocal 
relationship. However, we can have both positive charges and negative charges. A positive 

R

R

▲	 Figure 20.27	Magnetic	
field	in	Helmholtz	coils

Questions
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electric charge moves in the direction of the field, from a position of higher potential to a 
lower potential (just like a mass in a gravitational field). But a negative charge does just the 
opposite, against the direction of the field and from a low potential to a high potential.

What about electric charges in a magnetic field? A stationary charge is unaffected, but a 
moving charge experiences a force F given by F = Bqv sin θ. The direction of the force is 
given by Fleming’s left-hand rule (for positive charges).

Finally, a current-carrying conductor in a magnetic field does not experience a force if the 
conductor is parallel to the field direction, but for all other directions it experiences a force 
given by F = BIL sin θ. The direction of the force is again given by Fleming’s left-hand rule.

Force	between	parallel	conductors
A current-carrying conductor has a magnetic field around it. If a second current-
carrying conductor is placed parallel to the first, this second conductor will be in the 
magnetic field of the first and, by the motor effect, will experience a force.

By similar reasoning, the first conductor will also experience a force. By Newton’s third 
law these two forces will be equal in magnitude and opposite in direction. The effect can 
be demonstrated using the apparatus in Figure 20.29.

It can be seen that, if the currents are in the same direction, the pieces of foil move 
towards one another (the pinch effect). If the currents are in opposite directions, the pieces 
of foil move apart. An explanation for the effect can be found by reference to Figure 20.30.

The current in conductor X causes a magnetic field and the field lines are concentric 
circles (see Figure 20.22). These field lines will be at right angles to conductor Y and 
so, using Fleming’s left-hand rule, there will be a force on Y in the direction of X. Using 
similar reasoning, the force on X due to the magnetic field of Y is towards Y. Reversing the 
direction of the current in one conductor will reverse the directions of the two forces and, 
thus, when the currents are in opposite directions, the conductors tend to move apart.

The force per unit length on each of the conductors depends on the magnitude of the 
current in each conductor and also their separation. Until 2019, the ampere was defined 
in terms of the force per metre length acting between two long straight parallel current-
carrying conductors of negligible area of cross-section, situated in a vacuum.

conductor X conductor Y

force
on X

magnetic
field due to Y

magnetic
field due
to X

direction
of current

force
on Y

▲	 Figure 20.30	Diagram	
to	illustrate	the	force	
between	parallel	
current-carrying	
conductors

strips of
aluminium
foil

wood
blocks
held in
clamps

10 A

d.c. supply

▲	 Figure 20.29	Apparatus	
to	demonstrate	the	force	
between	parallel	current-
carrying	conductors

WORKED EXAMPLE 20G

 A charged particle has mass 6.7 × 10−27 kg and charge +3.2 × 10−19 C. It is travelling 
at a speed of 3.4 × 108 m s−1 when it enters a region of space where there is a 
uniform magnetic field of flux density 1.8 T at right angles to its direction of 
motion. Calculate:
a the gravitational force on the particle
b the force on the particle due to the magnetic field
c the radius of its orbit in the field.

Answers
a  Gravitational force = mg = 6.7 × 10−27 × 9.81
 = 6.6 × 10−26 N (negligible when compared with the force due to the magnetic field)
b Force = Bqv sin θ
 = 1.8 × 3.2 × 10−19 × 3.4 × 108 × 1
 = 2.0 × 10−10 N (1.96 × 10−10 N)
c Centripetal force is provided by the electromagnetic force
 mv2/r = Bqv
 6.7 × 10−27 × (3.4 × 108)2/r = 1.96 × 10−10

 r = 4.0 m (3.95 m)
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10 An electron and an α-particle travelling at the same speed both enter the same region 

of a uniform magnetic field which is at right angles to their direction of motion. 
State and explain any differences between the two paths in the field.

20.5 Electromagnetic induction
In Topic 20.4 we examined the pattern of the magnetic field in the region of a straight 
wire and various coils. However, the patterns shown in Figures 20.24 and 20.25 are not 
complete. All magnetic field lines should be continuous, as illustrated in Figure 20.31.

Early experimenters thought that there was a flow of something along these lines and 
this gave rise to the idea of a magnetic flux, since ‘flux’ means ‘flow’. Referring to 
Figure 20.3, we can see that the magnetic field lines are closer together between the 
centres of the poles than outside the region of the poles. Thus the closer together the 
lines the stronger the magnetic field and the greater the magnetic flux density. If an area 
is drawn parallel to the faces of the poles, then the number of lines passing normally 
through unit area gives a measure of the magnetic flux density. The magnetic flux, 
symbol Φ, can be thought of as the total number of lines passing through the whole area 
at right angles to the lines.

Magnetic flux is the product of the magnetic flux density and the area normal to 
the lines of flux.

Φ = BA

The angle a surface makes with the magnetic field affects the value for Φ. The flux will 
be maximum when the surface is at right angles to the field lines and zero when the 
surface is parallel to the field lines.

For a uniform magnetic field of flux density B which makes an angle θ with an 
area A, the magnetic flux Φ is given by the expression Φ = BA sin θ.

The unit of magnetic flux is the weber (Wb). Since the unit of magnetic flux density is 
the tesla, from Φ = BA, one weber is equal to one tesla metre-squared, i.e. T m2.

The magnetic flux density in a coil of N turns having an area of cross-section A is B. 
The flux Φ through this coil is given by Φ = BA. This magnetic flux passes through the 
N turns of the coil and results in magnetic flux linkage NΦ.

magnetic flux linkage = NΦ = BAN

WORKED EXAMPLE 20H

 A coil is constructed by winding 400 turns of wire on to a cylindrical iron core. 
The mean radius of the coil is 3.0 cm. It is found that the flux density B in the core 
due to a current in the coil is 1.4 T.
Calculate:
a the magnetic flux in the core
b the flux linkage of the coil.

Answers
 a Φ = BA, so Φ = 1.4 × π(0.03)2 = 4.0 mWb
b flux linkage = NΦ = 4.0 × 400 = 1.6 Wb

I I

▲	 Figure 20.31	Continuous	
magnetic	field	lines

Question
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11 A flat coil contains 250 turns of insulated wire and has a mean radius of 1.5 cm. 

The coil is placed in a region of uniform magnetic flux of flux density 85 mT such 
that there is an angle between the plane of the coil and the flux lines.

 Calculate the flux linkage in the coil for an angle of:

a zero

b 90°

c 35°.

Electromagnetic	induction
As described earlier, the link between electric current and magnetic field was discovered 
by Oersted in 1820. In 1831, Joseph Henry in the United States and Michael Faraday in 
England demonstrated that an e.m.f. could be induced by a magnetic field. The effect 
was called electromagnetic induction.

Electromagnetic induction is now easy to demonstrate in the laboratory because 
sensitive meters are available. Figure 20.32 illustrates apparatus which may be used for 
this purpose.

sensitive
galvanometer

horseshoe
magnet

flexible
wire

▲	 Figure 20.32	Apparatus	to	demonstrate	electromagnetic	induction

The galvanometer detects very small currents but it is important to realise that what is 
being detected are small electromotive forces (e.m.f.s). The current arises because there 
is a complete circuit incorporating an e.m.f. The following observations can be made.
» An e.m.f. is induced when:

• the wire is moved through the magnetic field, across the face of the pole-pieces
• the magnet is moved so that the wire passes across the face of the pole-pieces.

» An e.m.f. is not induced when:
• the wire is held stationary between the pole-pieces
• the magnet is moved so that the pole-pieces move along the length of the wire
• the wire moves lengthways so that it does not change its position between the 

poles of the magnet.

These observations lead to the conclusion that an e.m.f. is induced whenever lines of 
magnetic flux are cut. The cutting may be caused by a movement of either the wire or 
the magnet. The magnitude of the e.m.f. is also observed to vary.

» The magnitude of the e.m.f.:
• increases as the speed at which the wire is moved increases
• increases as the speed at which the magnet is moved increases
• increases if the wire is made into a loop with several turns (see Figure 20.33)
• increases as the number of turns on the loop increases.

▲	 Figure 20.33	Wire	
wound	to	form	a	loop	
of	several	turns

Question
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It can be concluded that the magnitude of the induced e.m.f. depends on the rate at 
which magnetic flux lines are cut. The rate may be changed by varying the rate at 
which the flux lines are cut by a single wire or by using different numbers of turns of 
wire. The two factors are taken into account by using the magnetic flux linkage (NΦ). 
Change in magnetic flux linkage Δ(NΦ) is equal to the product of the change in magnetic 
flux ΔΦ and the number of turns N of a conductor involved in the change in flux.

change in magnetic flux linkage Δ(NΦ) = NΔΦ

The experimental observations are summarised in Faraday’s law of electromagnetic 
induction.

The e.m.f. induced is proportional to the rate of change of magnetic flux linkage.

The experimental observations made with the apparatus of Figure 20.32 and Figure 20.33 
have been concerned with the magnitude of the e.m.f. However, it is noticed that the 
direction of the induced e.m.f. changes and that the direction is dependent on the 
direction in which the magnetic flux lines are being cut. The direction of the induced 
e.m.f. or current in a wire moving through a magnetic field at right angles to the field may 
be determined using Fleming’s right-hand rule. This rule is illustrated in Figure 20.34.

Motion

Field

Current

thuMb
Motion

First finger
Field

seCond finger
induced Current

▲	 Figure 20.34	Fleming’s	right-hand	rule

If the first two fingers and thumb of the right hand are held at right angles to one 
another, the First finger in the direction of the magnetic Field and the thuMb in 
the direction of Motion, then the seCond finger gives the direction of the induced 
e.m.f. or Current.

An explanation for the direction of the induced e.m.f. can be found by reference to the 
motor effect and conservation of energy.

Figure 20.35 shows a wire being moved downwards through a magnetic field.

direction
of current

horizontal
magnetic field

direction of
electromagnetic
force

motion
of wire

▲	 Figure 20.35
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Since the wire is in the form of a continuous loop, the induced e.m.f. gives rise to a 
current, and the direction of this current can be found using Fleming’s right-hand rule. 
This current is at right angles to the magnetic flux and, by the motor effect, there will be 
a force on the wire. Using Fleming’s left-hand rule (Figure 20.10), the force is upwards 
when the wire is moving downwards. Reversing the direction of motion of the wire 
causes a current in the opposite direction and, hence, the electromagnetic force would 
once again oppose the motion. This conclusion is not surprising when conservation of 
energy is considered. An electric current transfers energy and this energy must have 
been transferred from a source. Movement of the wire against the electromagnetic force 
means that work has been done on the wire in overcoming this force and it is this work 
which transfers energy to the charges in the wire. Anyone who has ridden a bicycle with 
a dynamo will realise that work has to be done to light the lamp!

This application of conservation of energy is summarised in Lenz’s law.

The direction of the induced e.m.f. is such as to cause effects to oppose the change 
producing it.

Faraday’s law of electromagnetic induction and Lenz’s law may be summarised using the 
equation

E = 
− d(NΦ)

dt

(see the Maths Note below) where E is the e.m.f. induced by a rate of change of flux 
linkage of d(NΦ)/dt. The minus sign indicates that the induced e.m.f. causes effects to 
oppose the change producing it.

For a small change Δ(NΦ) in flux linkage that occurs in time Δt (or where the flux 
linkage changes linearly with time), then the induced e.m.f. E is given by

E = 
− Δ(NΦ)

Δt

MATHS NOTE

The shorthand way of expressing the rate of change of a quantity x with time t is rate 
of change of x with t = dx/dt.

This represents a mathematical operation known as differentiation. It is achieved by 
finding the gradient of the graph of x against t.

You will come across this notation here, in connection with the rate of change 
of magnetic flux linkage, and in one of the equations for radioactive decay 
(Topic 23.2). This mathematics is beyond the scope of Cambridge International 
AS & A Level Physics. However, you may come across it if you are studying 
Cambridge International AS & A Level Mathematics.
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WORKED EXAMPLE 20I

 The uniform flux density between the poles of a magnet is 0.075 T. A small coil 
of area of cross-section 4.8 cm2 has 200 turns and is placed with its plane at right 
angles to the magnetic field. The coil is withdrawn from the field in a time of 0.24 s.
Determine:
a the magnetic flux through the coil when it is between the poles of the magnet
b the change in magnetic flux linkage when the coil is removed from the field
c the average e.m.f. induced in the coil whilst it is being withdrawn.

Answers
 a magnetic flux Φ = BA sin θ

  = 0.075 × 4.8 × 10−4

  = 3.6 × 10−5 Wb
b change in flux linkage = (NΦ)FINAL −  (NΦ)INITIAL

  = 0 − (200 × 3.6 × 10−5)
  = −7.2 × 10−3 Wb
(the sign indicates that the flux linkage is decreasing)

c induced e.m.f. = change in flux linkage
time taken

   = (7.2 × 10−3)
0.24

   = 30 mV

12 An aircraft has a wingspan of 16 m and is flying horizontally in a northerly direction 
at a speed of 85 m s−1. The vertical component of the Earth’s magnetic field is 40 µT 
in a downward direction.

a Calculate:

i the area swept out per second by the wings

ii the magnetic flux cut per second by the wings

iii the e.m.f. induced between the wingtips.

b State which wing-tip will be at the higher potential.

13 A current-carrying solenoid produces a uniform magnetic flux of density 4.6 × 10−2 T 
along its axis. A small circular coil of radius 1.2 cm has 350 turns of wire and is 
placed on the axis of the solenoid with its plane normal to the axis. Calculate the 
average e.m.f. induced in the coil when the current in the solenoid is reversed in a 
time of 85 ms.

14 A metal disc is made to spin at 16 revolutions per second about an axis through 
its centre normal to the plane of the disc. The disc has radius 20 cm and spins 
in a uniform magnetic field of flux density 0.15 T, parallel to the axis of rotation. 
Calculate:

a the area swept out each second by a radius of the disc

b the flux cut each second by a radius of the disc

c the e.m.f. induced in the disc.

Questions
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EXTENSION

Applications	of	electromagnetic	induction

Eddy	current	damping
The generation of an electric current in a conductor by doing mechanical work  
may be shown by spinning a metal disc in a magnetic field, as illustrated in  
Figure 20.36.

SN

metal
disc

pole-piece
of magnet

▲ Figure 20.36	Apparatus	to	demonstrate	eddy	current	damping

An e.m.f. is induced between the rim of the disc and the axle. The 
apparatus illustrated is the basis of a means by which a direct e.m.f. may be 
generated (see question 14 opposite).

The disc is seen to slow down much more rapidly with the magnet in place than 
when it has been removed. As the disc spins, it cuts through the flux lines of the 
magnet. This cutting becomes more obvious if the radius of the disc is considered. 
As the radius rotates, it will cut flux. An e.m.f. will be induced in the disc but, 
because the rate of cutting of flux varies from one part of the disc to another, the 
e.m.f. will have different magnitudes in different regions of the disc. The disc is 
metal and, therefore, electrons will move between regions within the disc that have 
different e.m.f. values. Currents are induced in the disc. Since these currents vary 
in magnitude and direction, they are called eddy currents. The eddy currents cause 
heating in the disc and the dissipation of the energy of rotation of the disc is referred 
to as eddy current damping.

If the permanent magnet in Figure 20.36 is replaced by an electromagnet, the 
spinning disc will be slowed down whenever there is a current in the electromagnet. 
This is the principle behind electromagnetic braking. The advantage over 
conventional brakes is that there is no physical contact with the spinning disc. 
This makes such brakes very useful for trains travelling at high speeds. However, 
the disadvantage is that, as the disc slows down, the induced eddy currents will 
be smaller and, therefore, the braking will be less efficient. This system would be 
useless as the parking brake on a car!
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e.m.f.	induced	between	two	coils
A current-carrying solenoid or coil is known to have a magnetic field. Consider the 
apparatus illustrated in Figure 20.37.

direction of magnetic field due to
induced current when switching on

direction of magnetic
field when switching on

coil B

coil A

▲	 Figure 20.37

As the current in coil A is being switched on, the magnetic field in this coil grows. 
The magnetic field links with the turns on coil B and, as a result, there is a change 
in flux linkage in coil B and an e.m.f. is induced in this coil. Coil B forms part of a 
complete circuit and hence there is a current in coil B. The direction of this current 
can be determined using Lenz’s law.

The change which brought about the induction of a current was a growth in the 
magnetic flux in coil A. The induced current in coil B will give rise to a magnetic 
field in coil B and this field will, by Lenz’s law, try to oppose the growth of the field 
in coil A. Consequently, since the field in coil A is vertically upwards (the right-hand 
grip rule), the field in coil B will be vertically downwards and the induced current 
will be in an anticlockwise direction through the meter.

When the current in coil A is switched off, the magnetic field in coil A will decay. 
The magnetic field in coil B due to the induced current must try to prevent this decay 
and hence it will be vertically upwards. The induced current has changed in direction.

The magnitude of the induced e.m.f. can be increased by inserting a soft-iron core 
into the coil (but be careful not to damage the meter as any induced e.m.f. will be 
very much greater) or by increasing the number of turns on the coils or by switching 
a larger current in coil A.

It is important to realise that an e.m.f. is induced only when the magnetic flux 
in coil A is changing; that is, when the current in coil A is changing. A steady 
current in coil A will not give rise to an induced e.m.f. An e.m.f. may be induced 
continuously in coil B if an alternating current is provided for coil A. This is the 
principle of the transformer.
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SUMMARY

» A magnetic field is a region of space where either a 
magnet or moving charge will experience a force.

» A magnetic field can be represented by magnetic 
field lines. Magnetic field lines never touch or 
cross.

» The closeness of magnetic field lines indicates the 
strength of the magnetic field.

» The direction of the magnetic field is given by 
the direction in which a free magnetic north pole 
would move, if placed in the field.

» There is a force on a current-carrying conductor 
whenever it is at an angle to a magnetic field.

» The direction of the force is given by Fleming’s 
left-hand rule – place the first two fingers and 
thumb of the left hand at right angles to each 
other, first finger in the direction of the magnetic 
field, second finger in the direction of the current, 
then the thumb gives the direction of the force.

» The magnitude of the force F on a conductor of 
length L carrying a current I at an angle θ to a 
magnetic field of flux density B is given by the 
expression F = BIL sin θ.

» The magnitude of the flux density is defined as 
the force acting per unit current per unit length 
on a straight wire placed at right angles to the 
magnetic field.

» Magnetic flux density (field strength) is measured 
in tesla (T). 1 T = 1 Wb m−2.

» The force F on a particle with charge q	moving at 
speed v at an angle θ to a magnetic field of flux 
density B is given by the expression: F = Bqv sin θ.

» The direction of the force is given by Fleming’s 
left-hand rule.

» The path of a charged particle, moving at constant 
speed in a plane at right angles to a uniform 
magnetic field, is circular.

» The force on a charge carrier moving through a 
conductor placed in a magnetic field results in 
the production of a potential difference, the Hall 
voltage, across the conductor.

» The Hall voltage VH is given by the expression  
VH = BI/ntq. Since the Hall voltage is proportional to 
the magnetic flux density, a calibrated Hall probe 
can be used to measure flux densities.

» Electric and magnetic fields, placed mutually 
perpendicular to each other and normal to the 
direction of motion of a charged particle, may be 
used for the selection of the velocity of charged 
particles.

» An electric current gives rise to a magnetic field, 
the strength and direction of which depends on the 
size of the current and the shape of the current-
carrying conductor.

» The direction of the field due to a straight wire is 
given by the right-hand rule.

» The direction of the field in a solenoid is given by 
the right-hand grip rule.

» The field of a solenoid may be increased in 
strength by a ferrous core; this is the principle of 
an electromagnet.

» Two wires carrying current in the same direction 
attract each other, and repel if the currents are 
opposite in directions.

» Magnetic flux is the product of flux density and 
area normal to the flux: Φ = BA.

» Magnetic flux linkage is the product of the 
magnetic flux through the coil and the number of 
turns on the coil, NΦ.

» The direction of the induced current in a conductor 
moving through a magnetic field is given by 
Fleming’s right-hand rule. That is, if the first two 
fingers and thumb of the right hand are held at 
right angles to each other, the first finger in the 
direction of the magnetic field and the thumb in the 
direction of motion, then the second finger gives 
the direction of the induced e.m.f. or current.

» Faraday’s law of electromagnetic induction states 
that the e.m.f. induced is proportional to the rate of 
change of magnetic flux linkage.

» Lenz’s law states that the direction of the induced 
e.m.f. is such as to cause effects to oppose the 
change producing it.

» Faraday’s law of electromagnetic induction and 
Lenz’s law may be summarised using the equation 
E = −d(NΦ)/dt where E is the e.m.f. induced by a 
rate of change of flux linkage of d(NΦ)/dt. The sign 
indicates the relative direction of the e.m.f. and the 
change in flux linkage.
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END OF TOPIC QUESTIONS

1 A stiff straight wire has a mass per unit length of 55 g m−1. The wire is laid on a 
horizontal bench and a student passes a current through it to try to make it lift 
off the bench. The horizontal component of the Earth’s magnetic field is 18 μT in a 
direction from south to north and the acceleration of free fall is 10 m s−2.
a i State the direction in which the wire should be laid on the bench.

ii Calculate the minimum current required.
b Suggest whether the student is likely to be successful with this experiment.

2 The magnetic flux density B at a distance r from a long straight wire carrying a 
current I is given by the expression B = (2.0 × 10−7) × I/r, where r is in metres and I is 
in amperes.
a Calculate:

i the magnetic flux density at a point distance 4.0 cm from a wire carrying a 
current of 16 A,

ii the force per unit length on a second wire, also carrying a current of 16 A, 
which is parallel to, and 4.0 cm from, the first wire.

b Suggest why the force between two wires is demonstrated in the laboratory 
using aluminium foil rather than copper wires.

3 A small horseshoe magnet is placed on a balance and a stiff wire is clamped in the 
space between its poles. The length of wire between the poles is 5.0 cm. When a 
current of 3.5 A is passed through the wire, the reading on the balance increases 
by 0.027 N.
a Calculate the magnetic flux density between the poles of the magnet.
b State three assumptions which you have made in your calculation.

4 Fig. 20.38 shows the track of a particle in a bubble chamber as it passes through 
a thin sheet of metal foil. A uniform magnetic field is applied into the plane of the 
paper.

 State with a reason:
a in which direction the particle is moving,
b whether the particle is positively or negatively charged.

5 a Explain what is meant by a magnetic field. [2]
b A particle has mass m, charge +q and speed v.
 The particle enters a uniform magnetic field of flux density B such that, on 

entry, it is moving normal to the magnetic field, as shown in Fig. 20.39.
 The direction of the magnetic field is perpendicular to, and into the plane of the 

paper.
i On a copy of Fig. 20.39, draw the path of the particle through, and beyond, 

the region of the magnetic field. [3]
ii There is a force acting on the particle, causing it to accelerate.
 Explain why the speed of the particle on leaving the magnetic field is v. [1]

c The particle in b loses an electron so that its charge becomes +2q. Its change in 
mass is negligible.

 Determine, in terms of v, the initial speed of the particle such that its path 
through the magnetic field is unchanged. Explain your working. [3]

Cambridge International AS and A Level Physics (9702) Paper 43 Q8 Oct/Nov 2018

▲	 Figure 20.38

foil

▲	 Figure 20.39

path of particle
mass m

charge +q
speed v

region of
magnetic field
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End of topic questions

6 a State Faraday’s law of electromagnetic induction. [2]
b A solenoid S is wound on a soft-iron core, as shown in Fig. 20.40.

 

coil C

soft-iron
core

Hall probe

solenoid S

V

V

▲	 Figure 20.40

 A coil C having 120 turns of wire is wound on to one end of the iron core.  
The area of cross-section of the coil C is 1.5 cm2.

 A Hall probe is close to the other end of the core.
 When there is a constant current in the solenoid S, the flux density in the 

soft-iron core is 0.19 T.
 The reading on the voltmeter connected to the Hall probe is 0.20 V.
 The current in solenoid S is now reversed in a time of 0.13 s at a constant rate.

i Calculate the reading on the voltmeter connected to coil C during the time 
that the current is changing. [2]

ii Complete a copy of Fig. 20.41 for the voltmeter readings for the times 
before, during and after the direction of the current is reversed.

before current 
changes

during current 
change when 
current is zero

after current 
change

reading on voltmeter connected 
to coil C / V

reading on voltmeter connected 
to Hall probe / V

0.20

▲	 Figure 20.41 [4]

Cambridge International AS and A Level Physics (9702) Paper 43 Q9 Oct/Nov 2018
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Alternating currents 21 

Learning outcomes
By the end of this topic, you will be able to:

21.1 Characteristics of alternating currents
1 understand and use the terms period, 

frequency and peak value as applied to an 
alternating current or voltage

2 use equations of the form x = x0 sinω t 
representing a sinusoidally alternating 
current or voltage

3 recall and use the fact that the mean power 
in a resistive load is half the maximum power 
for a sinusoidal alternating current

4 distinguish between root-mean-square 
(r.m.s.) and peak values and recall and use 
Ir.m.s = I0/ 2 and Vr.m.s = V0/ 2 for a sinusoidal 
alternating current

21.2 Rectification and smoothing
1 distinguish graphically between half-wave 

and full-wave rectification
2 explain the use of a single diode for the half-

wave rectification of an alternating current
3 explain the use of four diodes (bridge 

rectifier) for the full-wave rectification of an 
alternating current

4 analyse the effect of a single capacitor in 
smoothing, including the effect of the value 
of capacitance and the load resistance

Starting points
★ Frequency f is related to period T by the expression f = 1/T.
★ Power is dissipated in a resistor and the magnitude of the power is given by 

the expressions P = I 2R or P = VI or P = V 2/R.
★ A diode is a device that allows current to move in one direction only.

21.1 Characteristics of alternating currents
Up to this point in our studies, we have dealt with systems in which a battery is 
connected to a circuit and there is a steady current in one direction. You will know this 
sort of current as a direct current, abbreviated to d.c. However, the domestic electricity 
supply, produced by generators, is one which uses alternating current (a.c.). 
An alternating current or voltage reverses its direction regularly and is usually 
sinusoidal, as shown in Figure 21.1.

t

I0

0
a.c.

I

t0

d.c.

T

▲ Figure 21.1 Direct and alternating currents

The time T taken for one complete cycle of the alternating current is the period of  
the current.
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We can represent the current and the voltage by the equations

 I = I0 sin ωt

V = V0 sin ωt

The graphs of I = I0 sin ωt and V = V0 sin ωt have the same sinusoidal shape as the graphs 
used to represent simple harmonic motion and so the electrons in a wire carrying a.c. 
move backwards and forwards with s.h.m. Hence we can describe the angular frequency 
of the current in rad s−1 as ω where T = 2π/ω. The reciprocal of the period is the frequency f. 
That is, f = 1/T and f = ω/2π. The frequency is the number of complete cycles per unit 
time. The unit of frequency is the hertz (Hz) where 1 Hz = 1 cycle per second.

The peak value of the current or voltage is I0 or V0, the amplitude of the oscillating 
current or voltage. Sometimes the term peak-to-peak value is used; this means 2I0 or 
2V0, or twice the amplitude.

WORKED EXAMPLE 21A

The variation with time t (in seconds) of the potential difference V (in volts) of an 
alternating supply is given by V = 24 sin 380t.
Determine, for this supply:
a the peak potential difference
b the frequency.

Answers
a peak potential difference = 24 V
b ω = 2πf = 380
 frequency = 380/2π = 60 Hz

1 The peak value of the mains potential difference delivered to homes in India is 
325 V and the frequency is 50 Hz. Write an equation for the variation in the mains 
potential difference in terms of time t.

Measuring period and frequency using a  
cathode-ray oscilloscope
A cathode-ray oscilloscope (CRO) has a calibrated time-base, so that measurements 
from the screen of the CRO can be used to give values of time intervals. One application 
is to measure the frequency of a sinusoidally varying current or voltage. The signal is 
connected to the Y-input of the CRO, and the y-gain and time-base controls are adjusted 
until a trace of at least one, but fewer than about five, complete cycles of the signal 
is obtained on the screen. The distance L on the graticule (the scale on the screen) 
corresponding to one complete cycle is measured (Figure 21.2).

1 cm

L

Question

 Figure 21.2 The use of a CRO to 
measure frequency
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It is good practice to measure the length of, say, four cycles, and then divide by 4 so as 
to obtain an average value of L. The graticule will probably be divided into centimetre 
and perhaps millimetre or two-millimetre divisions. If the time-base setting is x (which 
will be in units of seconds, milliseconds or microseconds per centimetre), the time T for 
one cycle is given by T = Lx. The frequency f of the signal is then obtained from f = 1/T.

The uncertainty of the determination will depend on how well you can estimate the 
measurement of the length of the cycle from the graticule. Remembering that the  
trace has a finite width, you can probably measure this length to an uncertainty of  
about ±2 mm.

WORKED EXAMPLE 21B

An alternating current is connected to the Y-input of a CRO. When the time-base 
control is set at 0.50 milliseconds per centimetre, the trace shown in Figure 21.3 is 
obtained. What is the frequency of the current?

Answer
Two complete cycles of the trace occupy 6.0 cm on the graticule. The length of 
one cycle is therefore 3.0 cm. The time-base setting is 0.50 ms cm−1, so 3.0 cm is 
equivalent to 3.0 × 0.50 = 1.5 ms. The frequency is thus 1/1.5 × 10−3 = 670 Hz.

1 cm

▲ Figure 21.3

2 The same signal is applied to the Y-input of the CRO as in Worked Example 21B, 
but the time-base control is changed to 2.0 milliseconds per centimetre. How many 
complete cycles of the trace will appear on the screen, which is 8.0 cm wide?

Measuring voltage or current using a cathode-ray 
oscilloscope
The cathode-ray oscilloscope, with its calibrated y-gain, may be used to measure the 
amplitude of an alternating voltage signal.

(We have already seen how the time-base of the CRO may be used to measure time.) 
The signal is connected to the Y-input, and the y-gain and time-base settings are 
adjusted until a suitable trace is obtained (Figure 21.4). The amplitude A of the trace is 
measured. If the y-gain setting is Q (in units of volts per centimetre), the peak value V0 
of the signal is given by V0 = AQ. The peak-to-peak value is 2V0.

If the time base is switched off a straight vertical line will be displayed on the screen. 
The peak-to-peak value of this trace from bottom to top can be measured. The peak 
value V0 is half the peak-to-peak voltage.

Once we know the peak voltage (V0) and the resistance (R) of the component the 
oscilloscope is connected across, we can calculate the peak current (I0) using the 
equation V = IR.

Question
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1 cm

A

▲ Figure 21.4 Measurement of alternating voltage

WORKED EXAMPLE 21C

An alternating voltage is connected to the Y-input of a CRO. When the Y-amplifier 
control is set to 5.0 millivolts per centimetre, the trace shown in Figure 21.5 is 
obtained. Find the peak voltage of the signal.

Answer
Measure the amplitude of the trace on the graticule: this is 1.4 cm. The y-gain setting 
is 5.0 mV cm−1. 1.4 cm is thus equivalent to 1.4 × 5.0 = 7.0 mV. The peak voltage of the 
signal is 7.0 mV.

1 cm

1.4 cm

▲ Figure 21.5

3 The Y-input of a CRO is connected to an alternating voltage source. When the y-gain 
control is set to 20 millivolts per centimetre, the trace shown in Figure 21.6 is 
obtained. Find the peak-to-peak voltage of the signal.

 
1 cm

▲ Figure 21.6

Power in an a.c. circuit
It is clear from Figure 21.1 that the average value of an alternating current is zero. 
However, this does not mean that when an a.c. source is connected to a resistor, no 
power is generated in the resistor. An alternating current in a wire can be thought of as 
electrons moving backwards and forwards, and passing on their energy by collision.

Question
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The power generated in a resistance R is given by the usual formula

P = I2R

but here the current I must be written as

I = I0 sin ωt

Thus

P = I0
2R sin2 ωt

Since I0
2 and sin2 ωt are always positive, we see that the power P is also always positive.

The expression we have just derived for P gives the power at any instant. What is much 
more useful is the average or mean power. This is the quantity which must be used in 
assessing the power generated in the resistor. Because I0 and R are constants, the average 
value of P will depend on the average value of sin 2 ωt, which is 1

2
. So the average power 

<P> delivered to the resistor is

<P> = 1
2
I0

2R = 1
2
V0

2/R

or

For a sinusoidal alternating current the mean power is half the maximum power.

We could use the average value of the square of the current or the voltage in these 
relations, since

<I2> = 1
2
I0

2 and <V2> = 1
2
V0

2

The square root of <I2> is called the root-mean-square, or r.m.s. value of the current 
Irms and similarly the square root of <V2> the root-mean-square, or r.m.s. value of the 
voltage Vrms. The numerical relations are

Irms =    <I2> = I0 /   2 = 0.707I0

Vrms =    <V2> = V0 /   2 = 0.707V0 

The r.m.s. values are useful because they represent the effective values of current and 
voltage in an a.c. circuit. A direct current with a value of I, equal to the r.m.s current Irms 
of an a.c. circuit, will produce exactly the same heating effect in a resistor. In specifying 
a domestic supply voltage, it is the r.m.s. value that is quoted, not the peak value.

The r.m.s. value of the alternating current or voltage is that value of the direct 
current or direct voltage that would produce thermal energy at the same rate in  
a resistor.

WORKED EXAMPLE 21D

A 1.5 kW heater is connected to the domestic supply, which is quoted as 230 V. 
Calculate the peak current in the heater, and its resistance.

Answer
The r.m.s version of the power/current/voltage equation is IrmsVrms = mean power.

This gives Irms = (1.5 × 103)/230 = 6.5 A.

The peak current I0 =    2Irms = 9.2 A

The resistance R = Vrms/Irms = 230/6.5 = 35 Ω
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4 The peak voltage of an alternating signal is 28 mV. Find the r.m.s. voltage.

5 For the alternating supply given by V = 24 sin 380t where V is in volts, determine the 
r.m.s. voltage.

6 A heater of resistance 35 Ω is connected to a domestic supply, quoted as 230 V.

a Calculate:

i the peak voltage of the supply

ii the average power in the resistor.

b What are the maximum and minimum values of the instantaneous power in  
the resistor?

21.2 Rectification and smoothing
It is sometimes necessary to convert an alternating current into a direct current. This is 
because most electronic devices require direct current, whereas the domestic supply is 
alternating. The conversion can be done by a process known as rectification.

Suppose a single diode (see Topic 9.3) is connected into the a.c. circuit of Figure 21.7.

We know that the diode allows current to flow in one direction only. This means that 
the output voltage across the resistor will consist only of the positive half-cycles of the 
input voltage, as shown in Figure 21.8. The diode has rejected the negative part of the 
input, producing a unidirectional voltage across the output resistor which fluctuates 
considerably, rather than a constant direct voltage. Nevertheless, we have achieved what 
is called half-wave rectification.

t

V
in

pu
t

0
t

V
ou

tp
ut

0

▲ Figure 21.8 Half-wave rectification

It is more satisfactory, and energy efficient, to make use of the negative half-cycles of  
the input and reverse their polarity, as shown in Figure 21.9. This process is called  
full-wave rectification.

t

V
in

pu
t

0
t

V
ou

tp
ut

0

▲ Figure 21.9 Full-wave rectification

Questions

diode

a.c. input

Voutput

▲ Figure 21.7 Single-diode 
circuit for half-wave 
rectification
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One circuit used for full-wave rectification is illustrated in Figure 21.10.

P

a.c.
input

Q

3 2

1 4

d.c. output

+

–

R

▲ Figure 21.10 Four-diode (bridge) circuit for full-wave rectification

It uses four diodes arranged in a diamond pattern and is referred to as a bridge rectifier 
circuit. The input terminals are P and Q. If P is positive during the first half-cycle, 
diodes 1 and 2 on opposite sides of the diamond will conduct. In the next half-cycle Q 
is positive, and diodes 3 and 4 conduct. Thus the resistor acting as a load will always 
have its upper terminal positive and its lower terminal negative.

The circuit has produced a unidirectional voltage, but the output is still not a good 
approximation to steady direct voltage, as required by most electronic equipment. 
We can improve the situation by inserting a capacitor across the output terminals of 
the bridge circuit as in Figure 21.11.

Cfrom full-wave
rectifier

+

–

R Voutput

t

V
ou

tp
ut

0

▲ Figure 21.11 Smoothing by capacitor

The capacitor charges up on the rising part of the half-cycle, and then discharges 
through the resistor as the output voltage falls. The effect is to reduce the fluctuations in 
the unidirectional output. This process is called smoothing.

The discharge of a capacitor was discussed in Topic 19.3. The important factor is the 
time constant of the resistor–capacitor circuit. If the product of the capacitance C and the 
load resistance R is much larger than the half-period of the original supply to the rectifier 
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circuit, the ripple on the direct voltage or current will be small. Ripple is the magnitude 
of the variation of the voltage or current that is superimposed on the direct voltage or 
current. Reducing the time constant will increase the ripple, as illustrated in Figure 21.12.

ripple

large value of RC
smaller value of RC

t
V

ou
tp

ut

0

▲ Figure 21.12 Magnitude of the ripple

SUMMARY

» Alternating current or voltage is represented by an 
equation of the form x = x0 sin ωt.

» The r.m.s. value of the alternating current or 
voltage is that value of the direct current or direct 
voltage that would produce thermal energy at the 
same rate in a resistor.

» Peak and root-mean-square (r.m.s.) values  
of sinusoidal current or voltage are related by an 
equation of the form x0 =    2xrms.

» For a sinusoidal input, mean power in a resistive 
load is one half of the peak power.

» A single diode gives half-wave rectification: 
negative half-cycles are blocked.

» A bridge circuit of four diodes can give full-wave 
rectification.

» A capacitor connected across the output reduces 
the fluctuations of the rectified output voltage 
applied to the load resistor.

» The degree of ripple depends on the time  
constant RC of the discharge of the smoothing 
capacitor through the load resistor. Larger RC 
gives smaller ripple.

END OF TOPIC QUESTIONS

1 A stereo system has two output channels, each connected to a loudspeaker of 
effective resistance 8.0 Ω. Each channel can deliver a maximum average power 
output of 48 W to its speaker. Calculate the r.m.s. voltage and the r.m.s. current 
fed to one speaker at this maximum power. Assume that the loudspeaker can be 
treated as a simple resistance and that the voltage is sinusoidal.

2 The full-wave rectifier circuit of Fig. 21.10 is used to rectify an a.c. input voltage of 
240 V r.m.s. The output resistor has resistance 17 kΩ.
a Calculate the peak value of the input voltage.
b Estimate the average current in the output resistor.

3 a Complete a copy of Fig. 21.13 to show four diodes connected to form a full-wave 
rectifier.

  

load
resistor

input

▲ Figure 21.13
b The root-mean-square input potential difference to the completed full-wave 

rectifier is 12 V.
 The frequency of the input potential difference is 50 Hz.

End of topic questions
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 On the axes of Fig. 21.14, sketch the variation with time t of the potential 

difference V across the load resistor for 3 periods of the input potential 
difference.

 
0

V

t

▲ Figure 21.14
c On the completed circuit diagram of Fig. 21.13, draw the symbol for a capacitor, 

connected so as to produce smoothing of the output potential difference.
d The output load resistor in a circuit providing half-wave rectification is 23 kΩ.
 The variation with time t of the output voltage V across the load is shown in  

Fig. 21.15.

 
4020 80

0

2

4

6

12060 100

t /ms

V
/V

▲ Figure 21.15

 A capacitor of capacitance 2 µF is now connected in parallel with the load 
resistor.

 On a copy of Fig. 21.15, sketch a line to show the variation with time t of the 
smoothed output voltage.

482807_21_CI_AS_Phy_SB_3e_340-348.indd   348 30/05/20   5:30 PM



349

A LEVEL

Learning outcomes
By the end of this section you will be able to:

22.1 Energy and momentum of a photon
1 understand that electromagnetic radiation 

has a particulate nature
2  understand that a photon is a quantum of 

electromagnetic energy
3 recall and use E = hf
4 use the electronvolt (eV) as a unit of energy
5  understand that a photon has momentum 

and that the momentum is given by  
p = E/c

22.2 Photoelectric effect
1  understand that photoelectrons may  

be emitted from a metal surface when 
it is illuminated by electromagnetic 
radiation

2  understand and use the terms threshold 
frequency and threshold wavelength

3  explain photoelectric emission in terms of 
photon energy and work function energy

4 recall and use hf = Φ + 12 mvmax
2

5  explain why the maximum kinetic energy of 
photoelectrons is independent of intensity, 

whereas the photoelectric current is 
proportional to intensity

22.3 Wave-particle duality
1  understand that the photoelectric effect 

provides evidence for a particulate 
nature of electromagnetic radiation while 
phenomena such as interference and 
diffraction provide evidence for a wave 
nature

2  describe and interpret qualitatively the 
evidence provided by electron diffraction 
for the wave nature of particles

3  understand the de Broglie wavelength as 
the wavelength associated with a moving 
particle

4 recall and use λ = h/p

22.4 Energy levels in atoms and line spectra
1  understand that there are discrete electron 

energy levels in isolated atoms (e.g. atomic 
hydrogen)

2  understand the appearance and formation 
of emission and absorption line spectra

3  recall and use the relation hf = E1
 – E2

Starting points
★	 A simple model of an atom involves a small massive positively charged 

nucleus around which orbit negatively charged electrons.
★	 The electrons orbit in shells at different distances from the nucleus.
★	 The speed of electromagnetic waves in free space is 3.00 × 108 m s–1.
★	 The speed c, frequency f and wavelength λ of electromagnetic radiation are 

related by the expression c = f λ.
★	 Electromagnetic waves may undergo interference and diffraction.
★	 Momentum of a particle is the product of its mass and velocity.

	 22	 Quantum	physics

22 Q
uantum

 physics
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22.1 Energy and momentum of a photon
At the end of the nineteenth century, it was fully accepted that light is a wave motion. 
Evidence for this came from observed interference and diffraction effects (Topic 8). 
The conclusions of experiments on the photoelectric effect first observed in 1887 (and 
described later in this topic) produced doubt as to whether light is a continuous wave.

Quantised energy
In 1901, the German physicist Max Planck suggested that the energy carried by 
electromagnetic radiation might exist as discrete packets or quantities called quanta.  
The energy E carried in each quantum is given by

E = hf = hc
λ

where f is the frequency of the radiation, λ is the wavelength and h is a constant called the 
Planck constant. The value of the Planck constant is 6.63 × 10–34 J s.

In 1905, Albert Einstein developed the theory of quantised energy to explain all the 
observations associated with photoelectric emission. He proposed that light radiation 
consists of a stream of energy packets called photons.

In the wave theory of light, the flow of energy in the wave is continuous. The concept of 
quanta, or ‘packets’ of energy, gives rise to a particulate nature of electromagnetic waves.

A particulate nature of electromagnetic radiation means that each photon will have not 
only energy but also momentum. The momentum p of each photon is related to its energy 
E and the speed c of electromagnetic waves by the expression

p = 
E
c

The energy of a photon of visible light varies between approximately 5.7 × 10–19 J and 
2.7 × 10–19 J. It can be seen that when dealing with photons, expressing the energy in 
joules leads to numerical values that are not easy to appreciate. Consequently a smaller 
unit of energy, the electronvolt (eV) is frequently used.

The electronvolt (eV) is the energy gained by an electron when it is accelerated from 
rest in a vacuum through a potential difference of one volt.

Since the work done in moving a charge Q through a potential difference V is QV 
(see Topic 9.2) and the charge on the electron is 1.60 × 10–19 C, then  
1  eV = 1.60 × 10–19 J.

The electronvolt is frequently a convenient unit for the measurement of photon 
energies and electron energy levels in atoms (as we shall see in Topic 22.4). 
Furthermore, we shall see that, when studying nuclear physics (Topic 23), a multiple 
of the electronvolt, the mega-electronvolt (MeV), is a convenient unit for the 
measurement of nuclear energies. One mega-electronvolt (MeV) is 106 eV or  
1.60 × 10–13 J.

▲ Figure 22.1 Albert 
Einstein

A photon is the special name given to a quantum of energy when the energy is in 
the form of electromagnetic radiation.
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1 A photon has an energy of 4.3 eV. Calculate, for this photon:

a the wavelength of electromagnetic radiation

b its momentum.

 (The Planck constant = 6.63 × 10–34 J s.)

22.2 Photoelectric effect
Some of the electrons in a metal are free to move around in it. (It is these electrons that 
form the electric current when a potential difference is applied across the ends of a metal 
wire.) However, to remove electrons from a metal surface requires energy, because they 
are held in the metal by the electrostatic attraction of the positively charged nuclei. If an 
electron is to escape from the surface of a metal, work must be done on it. The electron 
must be given energy. When this energy is in the form of light energy, the phenomenon 
is called photoelectric emission.

Photoelectric emission is the release of electrons from the surface of a metal when 
electromagnetic radiation is incident on its surface.

The electrons emitted are referred to as photoelectrons.

Demonstration of photoelectric emission
A clean zinc plate is placed on the cap of a gold-leaf electroscope. The electroscope is 
then charged negatively, and the gold leaf deflects, proving that the zinc plate is charged. 
This is illustrated in Figure 22.2.

ultraviolet
radiation

cap

negatively charged
zinc plate

gold-leaf
electroscope

gold leaf

–

–

–

–

– – –
–

–
–

–

gold-leaf
electroscope

gold leaf

a) b)

initial position
of gold leaf

leaf falls when
ultraviolet radiation

is incident

–
–
–
–
–
–
–
–

–
–

– – – – – – –

▲ Figure 22.2 Demonstration of photoelectric emission

Question

WORKED EXAMPLE 22A

An electromagnetic wave has speed 3.00 × 108 m s–1 and wavelength 550 nm.
For one photon in this wave, calculate:
a the energy in electronvolts
b the momentum.
(The Planck constant = 6.63 × 10–34 J s.)

Answers
a energy = hc/λ = (6.63 × 10–34 × 3.00 × 108)/(550 × 10–9)

  = 3.6 × 10–19 J = (3.6 × 10–19)/(1.6 × 10–19)
  = 2.3 eV

b momentum  = E/c
  = (3.6 × 10–19)/(3.0 × 108)
  = 1.2 × 10–27 N s
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If visible light of any colour is shone on to the plate, the leaf does not move. Even when 
the intensity (the brightness) of the light is increased, the leaf remains in its deflected 
position. However, when ultraviolet radiation is shone on the plate, the leaf begins to 
fall immediately, showing that it is losing negative charge. This means that electrons are 
being emitted from the zinc plate. These electrons are photoelectrons. If the intensity of 
the ultraviolet radiation is increased, the leaf falls more quickly, showing that the rate of 
emission of electrons has increased.

The difference between ultraviolet radiation and visible light is that ultraviolet radiation 
has a shorter wavelength and a higher frequency than visible light.

Further investigations with apparatus like this lead to the following conclusions:

» A positively charged electroscope cannot be discharged, indicating that only 
electrons are emitted.

» If photoemission takes place, it does so instantaneously. There is no delay 
between illumination and emission.

» Photoemission takes place only if the frequency of the incident radiation is 
above a certain minimum value called the threshold frequency f0.

» The wavelength corresponding to the threshold frequency is known as the 
threshold wavelength λ0.

» Different metals have different threshold frequencies.
» Whether or not emission takes place depends only on whether the frequency of 

the radiation used is above the threshold for that surface. It does not depend on 
the intensity of the radiation.

» For a given frequency, the rate of emission of photoelectrons (the photoelectric 
current) is proportional to the intensity of the radiation.

Another experiment, using the apparatus shown in Figure 22.3, can be carried out to 
investigate the energies of the photoelectrons.

V

A microammeter

incident
light

BA

adjustable p.d.

+ –

collectoremitter

▲ Figure 22.3 Experiment to measure the maximum kinetic energy of photoelectrons

If ultraviolet radiation of a fixed frequency (above the threshold) is shone on to the metal 
surface A, it emits photoelectrons. Some of these electrons travel from A to B. Current 
is detected using the microammeter. If a potential difference is applied between A and 
B, with B negative with respect to A, any electron going from A to B will gain potential 
energy as it moves against the electric field. The gain in potential energy is at the 
expense of the kinetic energy of the electron. That is,

loss in kinetic energy = gain in potential energy

 = charge of electron × potential difference
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If the voltage between A and B is gradually increased, the current registered on the 
microammeter decreases and eventually falls to zero. The minimum value of the 
potential difference necessary to stop the electron flow is known as the stopping 
potential. It measures the maximum kinetic energy with which the photoelectrons are 
emitted. The fact that there is a current in the microammeter at voltages less than the 
stopping potential indicates that there is range of kinetic energies for these electrons.

If the experiment is repeated with radiation of greater intensity but the same frequency, 
the maximum current in the microammeter increases, but the value of the stopping 
potential is unchanged.

The experiment can be repeated using ultraviolet radiation of different frequencies, 
measuring the stopping potential for each frequency. When the maximum kinetic 
energy of the photoelectrons is plotted against the frequency of the radiation, the graph 
of Figure 22.4 is obtained.
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▲ Figure 22.4 Graph of maximum kinetic energy of photoelectrons against frequency of 
radiation

The following conclusions are drawn from this experiment:

» The photoelectrons have a range of kinetic energies, from zero up to some 
maximum value. If the frequency of the incident radiation is increased, the 
maximum kinetic energy of the photoelectrons also increases.

» For constant frequency of the incident radiation, the maximum kinetic energy 
is unaffected by the intensity of the radiation.

» When the graph of Figure 22.4 is extrapolated to the point where the maximum 
kinetic energy of the photoelectrons is zero, the minimum frequency required 
to cause emission from the surface (the threshold frequency) may be found.

The conclusions of experiments on photoemission produced doubt as to whether light 
is a continuous wave. One of the main problems concerns the existence of a threshold 
frequency.

Classical wave theory predicts that when an electromagnetic wave (that is, light) 
interacts with an electron, the electron will absorb energy from it. So, if an electron 
absorbs enough energy, it should be able to escape from the metal. Remember that the 
energy carried by a wave depends on its amplitude (and its frequency) (see Topic 7.1). 
Thus, even if we have a low-frequency wave, its energy can be boosted by increasing 
the amplitude (that is, by increasing the brightness of the light). So, according to 
wave theory, we ought to be able to cause photoemission using any frequency of light, 
provided we make it bright enough. Alternatively, we could use less bright light and 
shine it on the metal for a longer time, until enough energy to cause emission has been 
delivered. But this does not happen – emission is instantaneous, if at all.
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The experiments we have described above showed conclusively that radiation of 
frequency below the threshold, no matter how intense or for how long it is used, does 
not produce photoelectrons. Furthermore, emission is instantaneous. The classical wave 
theory of electromagnetic radiation leads to the following predictions:
1 Whether an electron is emitted or not should depend on the power of the incident 

wave; that is, on its intensity. A very intense wave, of any frequency, should cause 
photoemission.

2 The maximum kinetic energy of the photoelectrons should be greater if the radiation 
intensity is greater.

3 There is no reason why photoemission should be instantaneous.

These predictions, based on wave theory, do not match the observations. A new 
approach, based on an entirely new concept, the quantum theory, was used to explain 
these findings.

Einstein’s theory of photoelectric emission
In 1905, Albert Einstein developed the theory of quantised energy, proposed by Planck, 
to explain all the observations associated with photoelectric emission. He proposed that 
light radiation consists of a stream of energy packets called photons. Remember that a 
photon is the special name given to a quantum of energy when the energy is in the form 
of electromagnetic radiation.

When a photon interacts with an electron, it transfers all its energy to the electron. 
It is only possible for a single photon to interact with a single electron; the photon 
cannot share its energy between several electrons. This transfer of energy is 
instantaneous.

The photon theory of photoelectric emission is as follows. If the frequency of the 
incident radiation is less than the threshold frequency for the metal, the energy carried 
by each photon is insufficient for an electron to escape the surface of the metal. If the 
photon energy is insufficient for an electron to escape, it is converted to thermal energy 
in the metal.

The minimum amount of energy necessary for an electron to escape from the 
surface is called the work function energy Φ.

Some values for the work function energy Φ and threshold frequency f0 of different 
metals are given in Table 22.1.

metal Φ/J Φ/eV f0/Hz

sodium 3.8 × 10–19 2.4 5.8 × 1014

calcium 4.6 × 10–19 2.9 7.0 × 1014

zinc 5.8 × 10–19 3.6 8.8 × 1014

silver 6.8 × 10–19 4.3 1.0 × 1015

platinum 9.0 × 10–19 5.6 1.4 × 1015

▲ Table 22.1 Work function energies and threshold frequencies

Remember: 1eV = 1.6 × 10 –19 J.

If the frequency of the incident radiation is equal to the threshold frequency, the energy 
carried by each photon is just sufficient for electrons at the surface to escape. If the 
frequency of the incident radiation is greater than the threshold frequency, surface 
electrons will escape and have surplus energy in the form of kinetic energy. These 
electrons will have the maximum kinetic energy. If a photon interacts with an electron 

482807_22_CI_AS_Phy_SB_3e_349-364.indd   354 30/05/20   5:36 PM



355

22.2 Photoelectric effect

22
below the surface, some energy is used to take the electron to the surface, so that it is 
emitted with less than the maximum kinetic energy. This gives rise to a range of values 
of kinetic energy.

Einstein used the principle of conservation of energy to derive the photoelectric 
equation

photon energy = work function energy +  maximum kinetic energy of 
photoelectron

or

hf = Φ + 1
2

mevmax
2

For radiation incident at the threshold frequency f0, then 1
2

mevmax
2 = 0 so that  

hf0 = Φ. The photoelectric equation can then be written

hf = hf0 + 1
2

mevmax
2

Note
Experimental evidence indicates that the photoelectric current, i.e. the rate of 
emission of photoelectrons, depends on the intensity of the radiation when the 
frequency is constant. Increasing intensity gives rise to increasing rate of emission 
of photoelectrons.

This observation has led many students to believe that rate of emission is 
independent of frequency. This is incorrect. A beam of radiation has an intensity. 
This intensity is numerically equal to the power incident normally on unit area 
of the surface. Since the beam consists of a stream of photons, the intensity is the 
product of the rate of arrival of photons and the energy of each photon. At constant 
intensity, the rate at which photons arrive at the metal surface depends on the 
energy of each photon. So, if the frequency of the radiation increases, the energy 
of each photon increases and, therefore, for constant intensity, the rate of arrival of 
photons decreases. Fewer photons per unit time mean a smaller rate of emission  
of electrons.

WORKED EXAMPLE 22B

The work function energy of platinum is 9.0 × 10–19 J. Calculate:
a the threshold frequency for the emission of photoelectrons from platinum
b the maximum kinetic energy of a photoelectron when radiation of frequency  

2.0 × 1015 Hz is incident on a platinum surface.
 (The Planck constant = 6.63 × 10–34 J s.)

Answers
a Using hf0 = Φ, f0 = Φ/h, so
 f0 = 9.0 × 10–19/6.63 × 10–34 = 1.4 × 1015 Hz (1.36 × 1015 Hz)
b Using hf = hf0 + 1

2
mevmax

2, hf – hf0 = 1
2

mevmax
2 and so

 1
2

mevmax
2 = 6.63 × 10–34 (2.0 × 1015 – 1.4 × 1015) = 4.0 × 10–19 J
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2 The work function energy of zinc is 3.6 eV. Calculate the threshold wavelength for 

electromagnetic radiation incident on the surface of zinc.

3 Electromagnetic radiation of frequency 3.0 × 1015 Hz is incident on the surface of 
sodium metal. The emitted photoelectrons have a maximum kinetic energy of 10 eV. 
Calculate the threshold frequency for photoemission from sodium.

4 Data for the threshold frequency f0 and the work function energy Φ of some metal 
surfaces are shown in Table 22.2.

metal f0  /1014 Hz Φ/10–19 J

platinum

sodium

zinc

5.8

8.8

9.0

3.8

5.8

a Calculate the threshold frequency for platinum.

b A beam of electromagnetic radiation having a continuous range of wavelengths 
between 320 nm and 550 nm is incident, in turn, on each of the above metals. 
Determine which metals will emit photoelectrons.

c When light of frequency f and intensity I is incident on a certain metal surface, 
electrons are emitted. State and explain the effect, if any, on the emission of 
photoelectrons for light of frequency 2f and intensity I.

22.3 Wave–particle duality
We have seen that the photoelectric effect provides evidence for a particulate nature 
(photons) of electromagnetic radiation while phenomena such as interference and 
diffraction provide evidence for a wave nature. There is a ‘wave–particle duality’. 
The question is, if light waves can behave like particles (photons), perhaps moving 
particles can behave like waves?

When a beam of X-rays of a single wavelength is directed at a thin metal foil, a 
diffraction pattern is produced as shown in Figure 22.5.

This is a similar effect to the diffraction pattern produced when light passes through a 
diffraction grating (see Topic 8). The metal foil contains many tiny crystals. The gaps 
between neighbouring planes of atoms in the crystals act as slits, creating a diffraction 
pattern. Note that the spot in the centre is comparable to the central (or zero order) 
maximum from a diffraction grating and the rings, going outward from the central spot, 
are analogous to the 1st, 2nd and 3rd order maxima.

In 1927 experiments showed that if a beam of electrons is directed at a graphite film, a 
similar diffraction pattern is produced, as shown in Figure 22.6.

Questions

▲ Table 22.2

▲ Figure 22.6 Electron diffraction pattern of graphite

▲ Figure 22.5 X-ray 
diffraction pattern of a 
metal foil
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The electrons, which we normally consider to be particles, are exhibiting a property 
we would normally associate with waves. Remember that, to observe diffraction, the 
wavelength of the radiation should be comparable with the size of the gap or ‘aperture’. 
The separation of planes of atoms in crystals is of the order of 10–10 m. The fact that 
diffraction is observed with electrons suggests that they have a wavelength of about the 
same magnitude as the spacing of the atoms in the graphite. Measurements taken from 
the electron diffraction pattern also allow the value of wavelength to be determined from 
the diffraction grating formula (see Topic 8.3).

In 1924 the French physicist Louis de Broglie had suggested that all moving particles 
have a wave-like nature. Using ideas based on quantum theory and on Einstein’s 
theory of relativity, he suggested that the momentum p of a particle and its associated 
wavelength λ are related by the equation

λ = h/p

where h is the Planck constant. λ is known as the de Broglie wavelength.

Measurements from the electron diffraction experiments made three years after 
de Broglie’s prediction confirmed not only that electrons have wave-like properties, but 
that their wavelength as given by the de Broglie equation λ = h/p.

EXTENSION

Probing matter using electrons
Electrons are not affected by the strong nuclear force. It was suggested that they might, 
therefore, be a more effective tool with which to investigate the structure of the atom.

If a beam of electrons is directed at a sample of powdered crystal and the electron 
wavelength is comparable with the interatomic spacing in the crystal, the electron 
waves are scattered from planes of atoms in the tiny crystals, creating a diffraction 
pattern (Figure 22.7). The fact that a diffraction pattern is obtained confirms the 
regular arrangement of the atoms in a crystalline solid. Measurements of the angles 
at which strong scattering is obtained can be used to calculate the distances between 
planes of atoms.

▲ Figure 22.7 Electron diffraction pattern of a sample of pure titanium

If the energy of the electron beam is increased, the wavelength decreases. Eventually, 
the electron wavelength may be of the same order of magnitude as the diameter of 
the nucleus. Probing the nucleus with high-energy electrons, rather than α-particles, 
gives a further insight into the dimensions of the nucleus, and also gives information 
about the distribution of charge in the nucleus itself.
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WORKED EXAMPLE 22C

Calculate the de Broglie wavelength of an electron travelling with a speed of 
2.6 × 107 m s–1.

(Planck constant h = 6.63 × 10–34 J s; electron mass me = 9.11 × 10–31 kg.)

Answer
Using λ = h/p and p = mv,

λ = 6.63 × 10–34/9.11 × 10–31 × 2.6 × 107 = 2.8 × 10–11 m

5 Calculate the de Broglie wavelength of an electron travelling with a speed of 
7.5 × 107 m s–1.

 (Planck constant h = 6.63 × 10–34 J s; electron mass me = 9.11 × 10–31 kg.)

6 Calculate the de Broglie wavelength of an electron which has been accelerated from 
rest through a potential difference of 650 V.

 (Planck constant h = 6.63 × 10–34 J s; electron mass me = 9.11 × 10–31 kg; electron 
charge e = –1.60 × 10–19 C.)

7 Calculate the speed of a neutron with de Broglie wavelength 1.6 × 10–10 m.

 (Planck constant h = 6.63 × 10–34 J s; neutron mass mn = 1.7 × 10–27 kg.)

22.4 Energy levels in atoms and line spectra
When white light from a tungsten filament lamp is passed through a prism, the light is 
dispersed into its component colours, as illustrated in Figure 22.8.

continuous
emission spectrum

white light

▲ Figure 22.8 Continuous spectrum of white light from a tungsten filament lamp

The band of different colours is called a continuous spectrum. A continuous spectrum 
has all colours (and wavelengths) between two limits. In the case of white light, the 
colour and wavelength limits are violet (about 400 nm) and red (about 700 nm). Since 
this spectrum has been produced by the emission of light from the heated tungsten 
filament, it is referred to as an emission spectrum. Finer detail of emission spectra than 
is obtained using a prism may be achieved using a diffraction grating.

A discharge tube is a transparent tube containing a gas at low pressure. When a high 
potential difference is applied across two electrodes in the tube, light is emitted. 
Examination of the light with a diffraction grating shows that the emitted spectrum is 
no longer continuous, but consists of a number of bright lines (Figure 22.9).

Questions
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▲	 Figure	22.9 Line spectrum of hydrogen from a discharge tube

Such a spectrum is known as an emission line spectrum. It consists of a number of 
separate colours, each colour being seen as a line which is the image of the slit in front 
of the source of light. The wavelengths corresponding to the lines of the spectrum 
are characteristic of the gas which is in the discharge tube. Note the gas could be a 
vaporised solid or liquid.

Electron energy levels in atoms
To explain how line spectra are produced we need to understand how electrons in atoms 
behave. Electrons in an atom can have only certain specific energies. These energies are 
called the electron energy levels of the atom. The energy levels may be represented as a 
series of lines against a vertical scale of energy, as illustrated in Figure 22.10.

zeroenergy

–0.061 x 10–18 J 
–0.086 x 10–18 J
–0.136 x 10–18 J 
–0.24 x 10–18 J 

–0.54 x 10–18 J

–0.38 eV
–0.54 eV
–0.85 eV
–1.5 eV

–3.4 eV

–2.18 x 10–18 J –13.6 eV

▲	 Figure	22.10 Electron energy levels for the hydrogen atom

The electron in the hydrogen atom can have any of these energy values, but cannot have 
energies between them. The energy levels are referred to as discrete energy levels.

Normally electrons in an atom occupy the lowest energy levels available. Under 
these conditions the atom and its electrons are said to be in the ground state. 
Figure 22.11a (overleaf) represents a hydrogen atom with its single electron in the 
lowest energy a state.

If, however, the electron absorbs energy, perhaps by being heated, or by collision 
with another electron, it may be promoted to a higher energy level. The energy 
absorbed is exactly equal to the difference in energy of the two levels. Under these 
conditions the atom is described as being in an excited state. This is illustrated in 
Figure 22.11b.
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An excited atom is unstable. After a short time, the excited electron will return to a 
lower level. To achieve this, the electron must lose energy. It does so by emitting a 
photon of electromagnetic radiation, as illustrated in Figure 22.11c.

The energy hf of the photon is given by

hf = E2 – E1

where E2 is the energy of the higher level and E1 is that of the lower, and h is the Planck 
constant. Using the relation between the speed c of light, frequency f and wavelength λ, 
the wavelength of the emitted radiation is given by

λ = 
hc
ΔE

where ΔE = E2 – E1. This movement of an electron between energy levels is called an 
electron transition. Note that, the larger the energy of the transition, the higher the 
frequency (and the shorter the wavelength) of the emitted radiation.

Note that this downward transition results in the emission of a photon. The atom can 
be raised to an excited state by the absorption of a photon, but the photon must have 
just the right energy, corresponding to the difference in energy of the excited state and 
the initial state. So, a downward transition corresponds to photon emission, and an 
upward transition to photon absorption.

Figure 22.12 shows some of the possible transitions that might take place when 
electrons in an excited atom return to lower energy levels.

E4

E3

E2

E1

▲ Figure 22.12 Some possible electron transitions

b)

–3.4 eV

0

electron

–13.6 eV

E2

E1

c)

–3.4 eV

0

–13.6 eV

E2

E1

electron
transition emitted

photon

–3.4 eV

0

electron

–13.6 eV

a)

▲ Figure 22.11 Electron in a hydrogen atom a) in its ground state, b) in an excited state and  
c) returning to its ground state with photon emission
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Each of the transitions results in the emission of a photon with a particular wavelength. 
For example, the transition from E4 to E1 results in light with the highest frequency and 
shortest wavelength. On the other hand, the transition from E4 to E3 gives the lowest 
frequency and longest wavelength.

Because the atoms of all elements have different energy levels, the energy differences 
are unique to each element. Consequently, each element produces a different and 
characteristic line spectrum. Spectra can be used to identify the presence of a 
particular element. The emission line spectrum of mercury is shown in Figure 22.13.

▲	 Figure	22.13 Mercury line spectrum from a mercury-vapour lamp

The study of spectra is called spectroscopy, and instruments used to measure the 
wavelengths of spectra are spectrometers. Spectrometers for accurate measurement of 
wavelength make use of diffraction gratings to disperse the light.

Continuous spectra
While the light emitted by isolated atoms such as those in low-pressure gases produces 
line spectra, the light emitted by atoms in a solid, a liquid, or a gas at high pressure 
produces a continuous spectrum. This happens because of the proximity of the atoms to 
each other. Interaction between the atoms results in a broadening of the electron energy 
levels. Consequently, transitions of a wide range of magnitudes of energy are possible, 
and light of a broad spread of wavelengths may be emitted to form a continuous 
spectrum with no gaps. Most continuous spectra are from hot, dense objects like stars, 
or the hot filament of an electric lamp as in Figure 22.8.

Absorption spectra
When light with a continuous spectrum (such as white light) passes through a low-pressure 
gas, such as the outer layers of a star, and the spectrum of the light is then analysed, it is 
found that light of certain wavelengths is missing. In their place are dark lines. This type of 
spectrum is called an absorption spectrum; one is shown in Figure 22.14.

▲	 Figure	22.14 Spectrum of the Sun showing absorption lines

As the light passes through the gas, some electrons absorb energy and make transitions 
to higher energy levels. Only photons of certain energies are absorbed. The wavelengths 
of the light absorbed correspond exactly to the energies needed to make particular 
upward transitions. When these excited electrons return to lower levels, the photons 
are emitted in all directions, rather than in the original direction of the light. Thus, the 
intensity of specific wavelengths is reduced and these wavelengths appear as dark lines. 
It follows that the wavelengths missing from an absorption line spectrum are those 
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present in the emission line spectrum of the same element. This is illustrated in  
Figure 22.15. Thus lines in an absorption line spectrum can be used to identify the 
presence of a particular element in the gaseous or vaporised substance that the light has 
passed through.

a)

b)

c)

▲	 Figure	22.15 Relation between an absorption spectrum and the emission spectrum of 
the same element: a) spectrum of white light, b) absorption spectrum of element and 
c) emission spectrum of the same element

WORKED	EXAMPLE	22D

Calculate the wavelength of the radiation emitted when the electron in a hydrogen 
atom makes a transition from the energy level at –0.54 × 10–18 J to the level 
at –2.18 × 10–18 J.

(Planck constant h = 6.63 × 10–34 J s; speed of light c = 3.00 × 108 m s–1.)

Answer
Here ΔE = E2 – E1 = –0.54 × 10–18 – (–2.18 × 10–18) = 1.64 × 10–18 J

Using λ = hc/ΔE,

λ = 6.63 × 10–34 × 3.00 × 108/1.64 × 10–18 = 1.21 × 10–7 m = 121 nm

8 Calculate the wavelength of the radiation emitted when the electron in a hydrogen 
atom makes a transition from the energy level at –0.85 eV to the level at –3.4 eV.

 (Planck constant h = 6.63 × 10–34 J s; speed of light c = 3.00 × 108 m s–1.)

9 The electron in a hydrogen atom makes a transition from the energy level 
at –13.58 eV to the level at –0.38 eV when a photon is absorbed. Calculate the 
frequency of the radiation absorbed.

 (Planck constant h = 6.63 × 10–34 J s; 1 eV = 1.60 × 10–19 J.)

10 The energy required to completely remove an electron in the ground state from an 
atom is called the ionisation energy. This energy may be supplied by the absorption 
of a photon, in which case the process is called photo-ionisation. Use information 
from Figure 22.10 to deduce the wavelength of radiation required to achieve photo-
ionisation of hydrogen.

 (Planck constant h = 6.63 × 10–34 J s; speed of light c = 3.00 × 108 m s–1.)

Questions
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End of topic questions

END OF TOPIC QUESTIONS

1 A zinc plate is placed on the cap of a gold-leaf electroscope and charged 
negatively. The gold leaf is seen to deflect. Explain fully the following observations.
a When the zinc plate is illuminated with red light, the gold leaf remains deflected.
b When the zinc plate is irradiated with ultraviolet radiation, the leaf collapses.
c When the intensity of the ultraviolet radiation is increased, the leaf collapses 

more quickly.
d If the zinc plate is initially charged positively, the gold leaf remains deflected 

regardless of the nature of the incident radiation.

2 A parallel beam of monochromatic light of wavelength 660 nm has an intensity of 
0.25 mW m–2.

 The beam is incident normally on a surface where the light is absorbed totally.

 Calculate, for a cross-sectional area of 1.2 cm2 of the beam:
a the number of photons passing per second through the area,
b the momentum of a photon of the light,
c the force exerted on the surface by the light.

 (Planck constant h = 6.63 × 10–34 J s; speed of light c = 3.00 × 108 m s–1.)

SUMMARY

» A photon is a quantum (or packet) of energy of 
electromagnetic radiation having energy equal 
to the product of the Planck constant and the 
frequency of the radiation, E = hf.

» The energy of subatomic particles is often 
measured in electronvolts (eV) or mega-
electronvolts (MeV).

» A photon has momentum given by p = E/c.
» Electrons may be emitted from metal surfaces if the 

metal is illuminated by electromagnetic radiation. 
This phenomenon is called photoelectric emission.

» Photoelectric emission cannot be explained by 
the wave theory of light. It is necessary to use 
the quantum theory, in which electromagnetic 
radiation is thought of as consisting of packets of 
energy called photons.

» The work function energy Φ of a metal is the 
minimum energy needed to free an electron from 
the surface of the metal.

» The Einstein photoelectric equation is:  
hf0 = Φ +  1

2
mevmax2.

» The threshold frequency f0 is the minimum 
frequency of incident radiation required to cause 
photoelectron emission from the surface of a 
particular metal and is given by: hf0 = Φ.

» The threshold wavelength is the corresponding 
maximum wavelength to give rise to photoelectric 
emission.

» Increasing intensity of the incident radiation 
increases the photoelectric current (rate of 

emission of photoelectrons) but does not affect the 
kinetic energy of emitted electrons.

» Interference and diffraction provide evidence for 
a wave nature of electromagnetic radiation while 
the photoelectric effect provides evidence for a 
particulate nature (photons).

» Electron diffraction provides evidence that moving 
electrons have a wave-like property.

» Moving particles show wave-like properties.
» The de Broglie wavelength of a moving particle is 

given by λ = h/p, where p is the momentum of the 
particle and h is the Planck constant.

» Electrons in isolated atoms can have only certain 
energies. These energies may be represented in 
an energy level diagram.

» Electrons in a given energy level may absorb energy 
and make a transition to a higher energy level.

» Excited electrons may return to a lower level with 
the emission of a photon, producing an emission 
line spectrum.

» The frequency f of the emitted radiation is given 
by E2 – E1 = hf, where E2 and E1 are the energies 
of the upper and lower levels and h is the Planck 
constant; the wavelength λ is given by λ = c/f,  
where c is the speed of light.

» When an electron absorbs energy from a 
continuous spectrum of electromagnetic radiation 
and moves to a higher energy level, an absorption 
line spectrum may be observed.
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3 The work function energy of the surface of a certain metal is 3.9 × 10–19 J.

a Calculate the longest wavelength for which photoemission is obtained.
b  This metal is irradiated with ultraviolet radiation of wavelength 250 nm. 

Calculate, for the emitted electrons:
i the maximum kinetic energy,
ii the maximum speed.

 (Planck constant h = 6.63 × 10–34 J s; speed of light c = 3.00 × 108 m s–1; electron mass 
me = 9.11 × 10–31 kg.)

4 Calculate the de Broglie wavelengths of:
a a ball of mass 0.30 g moving at 50 m s–1,
b a bullet of mass 50 g moving at 500 m s–1,
c an electron of mass 9.1 × 10–31 kg moving at 3.0 × 107 m s–1,
d a proton of mass 1.7 × 10–27 kg moving at 3.0 × 106 m s–1.

 (Planck constant h = 6.63 × 10–34 J s.)
5 When the visible spectrum emitted by the Sun is observed closely it is noted that 

light of certain frequencies is missing and in their place are dark lines.
a Explain how the gaseous outer atmosphere of the Sun could be responsible for 

the absence of these frequencies.
b Suggest how an analysis of this spectrum could be used to determine which 

gases are present in the Sun’s atmosphere.

6	 a Explain what is meant by the photoelectric effect. [2]
b One wavelength of electromagnetic radiation emitted from a mercury  

vapour lamp is 436 nm.
 Calculate the photon energy corresponding to this wavelength. [2]
c Light from the lamp in b is incident, separately, on the surfaces of  

caesium and tungsten metal.
 Data for the work function energies of caesium and tungsten metal is given in 

Fig. 22.16.

metal work function 
energy/eV

caesium

tungsten

1.4

4.5

▲	 Figure	22.16
 Calculate the threshold wavelength for photoelectric emission from:

i caesium, [2]
ii tungsten. [1]

d Use your answers in c to state and explain whether the radiation from the 
mercury lamp of wavelength 436 nm will give rise to photoelectric  
emission from each of the metals. [2]

Cambridge International AS and A Level Physics (9702) Paper 41 Q10 Oct/Nov 2016
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Nuclear physics 23 

Learning outcomes
By the end of this topic you will be able to:

23.1 Mass defect and nuclear binding energy
 1 understand the equivalence between energy 

and mass as represented by E = mc2 and 
recall and use this equation

 2 represent simple nuclear reactions 
by nuclear equations of the form

  14
7 N +  42 He → 17

8O + 1
1H

 3 define and use the terms mass defect and 
binding energy

 4 sketch the variation of binding energy per 
nucleon with nucleon number

 5 explain what is meant by nuclear fusion and 
nuclear fission

 6 explain the relevance of binding energy 
per nucleon to nuclear reactions, including 
nuclear fusion and nuclear fission

 7 calculate the energy released in nuclear 
reactions using E = c2Δm

23.2 Radioactive decay
 1 understand that fluctuations in count rate 

provide evidence for random nature of 
radioactive decay

 2 understand that radioactive decay is both 
spontaneous and random

 3 define activity and decay constant, and recall 
and use A = λN

 4 define half-life
 5 use λ = 0.693/t½

 6 understand the exponential nature of 
radioactive decay, and sketch and use 
the relationship x = x0e−λt, where x could 
represent activity, number of undecayed 
nuclei or received count rate

Starting points
★ An atom may be modelled as a massive, but very small, positively charged 

nucleus surrounded by negatively charged electrons.
★ A nucleus contains protons and neutrons.
★ Use the notation AZX for the representation of nuclides and to write nuclear 

reaction equations.
★ The masses of atoms and their constituents are usually expressed in unified 

atomic mass units (u).
★ The electronvolt (eV) is a unit of energy.
★ During radioactive decay an unstable nucleus emits particles and/or 

electromagnetic radiation.

23.1 Mass defect and nuclear binding energy
Mass defect
At a nuclear level, the masses we deal with are so small that it would be very clumsy to 
measure them in kilograms. Instead, we measure the masses of nuclei and nucleons in 
unified atomic mass units (u).

One unified atomic mass unit (1 u) is defined as being equal to one-twelfth of the 
mass of a carbon-12 atom. 1 u is equal to 1.66 × 10−27 kg.
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Using this scale of measurement, to six decimal places, we have

proton mass mp = 1.007276 u

neutron mass mn = 1.008665 u

electron mass me = 0.000549 u

Because all atoms and nuclei are made up of protons, neutrons and electrons, we should 
be able to use these figures to calculate the mass of any atom or nucleus. For example, 
the mass of a helium-4 nucleus, consisting of two protons and two neutrons, should be

(2 × 1.007276) u + (2 × 1.008665) u = 4.031882 u

However, the actual mass of a helium nucleus is 4.001508 u.

The difference between the expected mass and the actual mass of a nucleus is called 
the mass defect of the nucleus. In the case of the helium-4 nucleus, the mass defect is 
4.031882 − 4.001508 = 0.030374 u.

The mass defect of a nucleus is the difference between the total mass of the 
separate nucleons and the combined mass of the nucleus.

WORKED EXAMPLE 23A

Calculate the mass defect for a carbon-14 (14
6
C) nucleus. The measured mass  

is 14.003240 u.

Answer
The nucleus contains six protons and eight neutrons, of total mass  
(6 × 1.007276) + (8 × 1.008665) = 14.112976 u.
The mass defect is 14.112976 − 14.003240 = 0.109736 u.

1 Calculate the mass defect for a nitrogen-14 (14
7 N) nucleus. The measured mass is 

14.003070 u.

Mass–energy equivalence
In 1905, Albert Einstein proposed that there is an equivalence between mass and energy. 
The relationship between energy E and mass, or change in mass m, is

E = mc2

where c is the speed of light. E is measured in joules, m in kilograms and c in metres per 
second.

Using this relation, we can calculate that 1.0 kg of matter is equivalent to  
1.0 × (3.0 × 108)2 = 9.0 × 1016 J.

The mass defect of the helium nucleus, calculated previously as 0.030374 u, is equivalent to

0.030374 × 1.66 × 10−27 × (3.00 × 108)2 = 4.54 × 10−12 J.

(Note that the mass in u must be converted to kg by multiplying by 1.66 × 10−27.)

The joule is an inconveniently large unit to use for nuclear calculations. A more 
convenient energy unit is the electronvolt (eV) or mega-electronvolt (MeV) as many 
energy changes that take place in the nucleus are of the order of several MeV.

Question
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Since one electronvolt is the energy gained by one electron when it is accelerated 
through a potential difference of one volt (see Topic 22.1)

1 MeV = 1.60 × 10−19 × 1.0 × 106

or

1 MeV = 1.60 × 10−13 J

The energy equivalent of the mass defect of the helium nucleus is thus  
4.54 × 10−12/1.60 × 10−13 = 28.4 MeV.

If mass is measured in u and energy in MeV, 1 u is the equivalent of 934 MeV.

Binding energy
Within the nucleus there are strong forces which bind the protons and neutrons 
together. To completely separate all these nucleons requires energy. This energy is 
referred to as the binding energy of the nucleus. Stable nuclei, those which have little or 
no tendency to disintegrate, have large binding energies. Less stable nuclei have smaller 
binding energies.

Similarly, when protons and neutrons are joined together to form a nucleus, this binding 
energy must be released. The binding energy is the energy equivalent of the mass defect.

We have seen that energy equivalent of the mass defect of the helium-4 nucleus is 
28.4 MeV. Therefore, 28.4 MeV is the binding energy of the nucleus and is the energy 
required to separate, to infinity, the two protons and the two neutrons of this nucleus.

Binding energy is the energy equivalent of the mass defect of a nucleus. It is the 
energy required to separate to infinity all the nucleons of a nucleus.

WORKED EXAMPLE 23B

Calculate the binding energy, in MeV, of a carbon-14 nucleus with a mass defect of 
0.109736 u.

Answer
Either Using the equivalence 1 u = 934 MeV, 0.109736 u is equivalent to 102 MeV. 
Since the binding energy is the energy equivalent of the mass defect, the binding 
energy = 102 MeV.

Or

binding energy = 0.109736 × 1.66 × 10−27 × (3.00 × 108)2  = 1.64 × 10−11 J

 = (1.64 × 10−11)/(1.60 × 10−13) = 102 MeV

2 Calculate the binding energy, in MeV, of a nitrogen-14 nucleus with a mass defect  
of 0.1085 u.

Nuclear equations
The nucleus of any nuclide can be represented using nuclide notation (see Topic 11.1). 
This notation is useful when we wish to consider a nuclear reaction. For example, when 
a helium nucleus bombards a nitrogen nucleus, the reaction can be represented by

14
7
N + 4

2
He → 17

8
O + 1

1
H

Remember that nucleon number and charge are conserved in nuclear processes  
(Topic 11.1). For this reaction to take place, then three conditions must be met.
1 Conservation of proton number (7 + 2 = 8 + 1)
2 Conservation of nucleon number (14 + 4 = 17 + 1)
3 Conservation of mass–energy.

Question
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mass of 14

7
N = 14.003074 u

mass of 4
2
He = 4.002604 u

mass of 17
8
O = 16.99913 u

mass of 1
1
H  = 1.007825 u

The change in mass is 18.005678 u − 18.006955 u = (−)1.277 × 10−3 u.

This change in mass is equivalent to 1.2 MeV.

Note that the mass of the products is greater than the mass of the reacting nuclei.  
There is a mass excess.

For this reaction to take place then, by conservation of mass–energy, the helium nucleus 
must have kinetic energy of at least 1.2 MeV when it bombards the nitrogen nucleus.

For a reaction to occur spontaneously, there must be a mass defect so that the products 
of the reaction have some kinetic energy and thus mass–energy is conserved.

WORKED EXAMPLE 23C

A nucleus of uranium-234 decays by emission of an α-particle to form a nucleus of 
thorium-90. The total energy released during this decay is 4.77 MeV. Calculate the 
total change in mass during the decay.

Answer
4.77 MeV = 4.77 × 1.60 × 10−13 = 7.63 × 10−13 J

E = c2Δm

7.63 × 10−13 J = (3.0 × 108)2 × Δm

mass change = 8.48 × 10−30 kg

Stability of nuclei
A stable nucleus is one which has a very low probability of decay. Less stable nuclei  
are more likely to disintegrate. A useful measure of stability is the binding energy  
per nucleon of the nucleons in the nucleus.

Binding energy per nucleon is defined as the total energy needed to completely 
separate all the nucleons in a nucleus divided by the number of nucleons in  
the nucleus.

Figure 23.1 shows the variation with nucleon number of the binding energy per nucleon 
for different nuclides.
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▲ Figure 23.1 Binding energy per nucleon against nucleon number
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The most stable nuclides are those with the highest binding energy per nucleon. 
That is, those near point B on the graph. Iron-56 is one of these most stable nuclides. 
Typically, very stable nuclides have binding energies per nucleon of about 8 MeV.

Light nuclei, between A and B on the graph, may combine or fuse to form larger nuclei 
with larger binding energies per nucleon. This process is called nuclear fusion and is 
described in more detail below. For the process to take place, conditions of very high 
temperature and pressure are required, such as in stars like the Sun.

Heavy nuclei, between B and C on the graph, when bombarded with neutrons, may 
break into two smaller nuclei, again with larger binding energy per nucleon values. 
This process is called nuclear fission. This process is also described in more detail 
below.

Figure 23.2 highlights nuclides which may undergo fusion (blue part of curve) or 
fission (red part of curve) in order to increase their binding energy per nucleon.
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▲ Figure 23.2

When nuclear fusion or fission takes place, there is a change in the nucleon numbers 
of the nuclei involved in the reaction. A higher binding energy per nucleon is 
achieved, and this is accompanied by a release of energy. This release of energy during 
fission reactions is how the present generation of nuclear power stations produce 
electrical energy.

WORKED EXAMPLE 23D

1 The binding energy of a helium-4 nucleus is 28.4 MeV. Calculate the binding 
energy per nucleon.

2 The masses of a uranium-238 nucleus (238
92

U), a proton and a neutron are 
237.9997 u, 1.00728 u and 1.00867 u respectively.

 Calculate the binding energy per nucleon of uranium-238.

Answers
1 The helium-4 nucleus has 4 nucleons.
 The binding energy per nucleon is thus 28.4/4 = 7.1 MeV per nucleon.
2 Mass of nuclear constituents of U-238 = (92 × 1.00728) +  (146 × 1.00867)

 = 239.93558 u
 Mass defect = 239.93558u − 237.9997 u = 1.93588 u
 Binding energy per nucleon = (1.93588 × 934)/238 = 7.5971 MeV per nucleon
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3 The binding energy of a nitrogen-14 nucleus is 101 MeV. Calculate the binding energy 

per nucleon.

4 Data for the masses of some particles is given in Table 23.1.

nucleus or particle mass/u

proton 1.0073

neutron 1.0087

zirconium 97
40

Zr 97.0980

▲ Table 23.1

 Determine for a zirconium-97 nucleus:

a the mass defect

b the binding energy

c the binding energy per nucleon.

Nuclear fusion
Most of the energy on Earth comes from the Sun, where it is produced by nuclear fusion 
reactions. Light nuclei, such as isotopes of hydrogen, join together to produce heavier, 
more stable nuclei, and in doing so release energy.

Figure 23.3 shows eruptions from the Sun’s surface caused by particularly energetic 
fusion reactions.

Nuclear fusion occurs when two light nuclei combine to form a nucleus of  
greater mass.

One such fusion reaction is
1
1
H + 2

1
H → 3

2
He +  1

0
n + energy

From the binding energy per nucleon curve (Figure 23.1) we see that the binding energy 
per nucleon for light nuclei, such as hydrogen, is low. But if two light nuclei are made to 
fuse together, they may form a new heavier nucleus which has a higher binding energy 
per nucleon. It will be more stable than the two lighter nuclei from which it was formed. 
Because of this difference in stability, a fusion reaction such as this will release energy.

Although fusion reactions are the source of solar energy, we are, at present, unable 
to duplicate this reaction in a controlled manner on Earth. This is because the nuclei 
involved in fusion have to be brought very close together. Conditions of extremely 
high temperature and pressure, similar to those found at the centre of the Sun, are 
required. Reactions requiring these conditions are called thermonuclear reactions. 
Some fusion reactions involving hydrogen isotopes have been made to work in the Joint 
European Torus (JET), although not yet in a controlled, sustainable manner. In 2006, 
an international consortium agreed to undertake the ITER (International Tokamak 
Engineering Research) project, which is designed to produce up to 500 MW of fusion 
power sustained for over 400 seconds by the fusion of a 2

1
H – 3

1
H mixture. Construction 

on a site in southern France will take several years.

Nuclear fission
Within the nucleus of an atom, the nucleons experience both attractive and repulsive 
forces. The attractive force is called the strong nuclear force. This acts like a ‘nuclear 
glue’ to hold the nucleons together. The repulsive forces are the electric (Coulomb law) 
forces between the positively charged protons. Gravitational forces of attraction exist, 
but are negligible in comparison to the other forces. Stable nuclei have much larger 
attractive forces than repulsive forces. Stable nuclides generally have approximately the 

▲ Figure 23.3 The Sun’s 
surface

Questions
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same number of neutrons and protons in the nucleus. That is, the neutron-to-proton 
ratio is close to one. In heavy nuclei such as uranium and plutonium, there are far more 
neutrons than protons, giving a neutron-to-proton ratio of more than one. For example, 
uranium-235 has 92 protons and 143 neutrons, giving a neutron-to-proton ratio of 1.55. 
This leads to a much lower binding energy per nucleon compared with iron, and such 
nuclides are less stable. Any further increase in the number of neutrons in such nuclei is 
likely to cause the nucleus to undergo nuclear fission.

Nuclear fission is the splitting of a heavy nucleus into two lighter nuclei of 
approximately the same mass.

When a uranium-235 nucleus absorbs a neutron, it becomes unstable and splits into two 
lighter, more stable nuclei. There are many possible nuclear reactions, one of which is

235
92

U + 1
0
n → 141

56
Ba + 92

36
Kr + 31

0
n + energy

This process is called induced nuclear fission, because it is started by the capture of a 
neutron by the uranium nucleus.

WORKED EXAMPLE 23E

Use the data in Table 23.2 to calculate for the fission reaction:

 235
92

U + 1
0
n → 141

56
Ba + 92

36
Kr + 31

0
n

a the change in mass as a result of the fission
b the energy released per fission.

nucleus or particle mass/u
neutron 1.009
235
92U 235.123

141
45Ba 140.912

92
36Kr 91.913

▲ Table 23.2

Answers
a total mass of reactants = 235.123 + 1.009
 = 236.132 u

total mass of products  = 140.912 +  91.913 +  (3 × 1.009)
 = 235.852 u

(the electrons have negligible mass)
 mass change = 236.132 − 235.852

 = 0.28 u
b energy released = c2Δm

  = (3.00 × 108)2 × 0.28 × 1.66 × 10−27

  = 4.18 × 10−11 J

5 One fusion reaction that takes place in the Sun is the joining together of a deuterium 
nucleus 2

1
H and a proton 1

1
p to form a helium-3 nucleus.

 The binding energies per nucleon of deuterium and of helium-3 are 0.864 MeV and 
2.235 MeV.

a Write down the nuclear equation for this reaction.

b Explain why the binding energy per nucleon of a proton is zero.

c Calculate the energy released in this reaction.

Question
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EXTENSION

Chain reactions
Each of the fission reactions described by the equation on page 371 results in the 
release of three neutrons. Other possible fission reactions release two or three 
neutrons. If these neutrons are absorbed by other uranium-235 nuclei, these too 
may become unstable and undergo fission, thereby releasing even more neutrons. 
The reaction is described as being a chain reaction which is accelerating. This is 
illustrated in Figure 23.4. If this type of reaction continues uncontrolled, a great deal 
of energy is released in a short time, and a nuclear explosion results.

235U92
1n0

1n0

1n0

1n0

1n0

1n0

1n0

1n0
1n0

1n0

1n0
1n0

1n0

235U92

235
U92

23
5 U

92

23
5 U

92

235U92
235 U

92

23
5 U

92

235U92

235U92

235
U92

235U
92

235
U92

fission
fragment

▲ Figure 23.4 Accelerating chain reaction

If the number of neutrons which take part in the chain reaction is controlled so that 
the number of fissions per unit time is constant, rather than increasing, the rate of 
release of energy can be controlled. This situation is illustrated in Figure 23.5.

fission
fragment

1n0

1n0

1n0

1n0

1n0

1n0

1n0

1n0

1n0

1n0

235U92

235U92235 U
92

235 U
92

control rod

▲ Figure 23.5 Controlled chain reaction

These conditions apply in the reactor of a modern nuclear power station, where 
some of the neutrons released in fission reactions are absorbed by control rods in 
order to limit the rate of fission reactions.

Two of the neutrons produced by fission are absorbed by control rods. The third 
neutron induces further nuclear fission.

23.2 Radioactive decay
Some elements have nuclei which are unstable. In order to become more stable, they 
emit particles and/or electromagnetic radiation (see Topic 11.1). The nuclei are said to be 
radioactive.
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Detection of fluctuations in the count rate of radioactive sources provides evidence for 
the random nature of radioactive decay. The decay is random in that it is not possible to 
predict which nucleus in a sample will decay next.

Radioactive decay is a random process in that it cannot be predicted which nucleus 
will decay next. There is a constant probability that a nucleus will decay in any 
fixed period of time.

The rate of decay of a sample of a radioactive material decreases with time. However, 
the rate of decay cannot be changed by changing any environmental factors (e.g. 
temperature or pressure). This shows that radioactive decay is a spontaneous process.

Radioactive decay is a spontaneous process because it is not affected by any 
external factors, such as temperature or pressure.

Random decay
We now look at some of the consequences of the random nature of radioactive decay.  
If six dice are thrown simultaneously (Figure 23.6), it is likely that one of them will 
show a six.

If 12 dice are thrown, it is likely that two of them will show a six, and so on. While it is 
possible to predict the likely number of sixes that will be thrown, it is impossible to say 
which of the dice will actually show a six. We describe this situation by saying that the 
throwing of a six is a random process.

In an experiment similar to the one just described, some students throw a large number 
of dice (say 6000). Each time a six is thrown, that die is removed. The results for the 
number of dice remaining after each throw are shown in Table 23.3.

number of throws number of dice remaining number of dice removed

0 6000 1000

1 5000  827

2 4173  696

3 3477  580

4 2897  483

5 2414  402

6 2012  335

7 1677  280

8 1397

▲ Table 23.3 Results of dice-throwing experiment

Figure 23.7 is a graph of the number of dice remaining against the number of throws.
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▲ Figure 23.7

▲ Figure 23.6 The dice 
experiment
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This kind of graph is called a decay curve. The rate at which dice are removed is not 
linear, but there is a pattern. After between 3 and 4 throws, the number of dice remaining 
has halved. Reading values from the graph shows that approximately 3.8 throws would 
be required to halve the number of dice. After another 3.8 throws the number has halved 
again, and so on.

We can apply the dice experiment to model radioactive decay. The 6000 dice represent 
radioactive nuclei. To score a six represents radioactive emission. All dice scoring six 
are removed, because once a nucleus has undergone radioactive decay, it is no longer 
available for further decay. Thus, we can describe how rapidly a sample of radioactive 
material will decay.

A graph of the number of undecayed nuclei in a sample against time has the typical 
decay curve shape shown in Figure 23.8.
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▲ Figure 23.8 Radioactive decay curve

It is not possible to state how long the entire sample will take to decay (its ‘life’). However, 
after 3 minutes the number of undecayed nuclei in the sample has halved. After a further 
3 minutes, the number of undecayed atoms has halved again. We describe this situation 
by saying that this radioactive isotope has a half-life t1

 

2
of 3 minutes.

The half-life of a radioactive nuclide is the time taken for the number of undecayed 
nuclei to be reduced to half its original number.

The half-lives of different isotopes have a very wide range of values. Examples of some 
radioactive isotopes and their half-lives are given in Table 23.4.

radioactive isotope half-life

uranium-238 4.5 × 109 years

radium-226 1.6 × 103 years

radon-222 3.8 days

francium-221 4.8 minutes

astatine-217 0.03 seconds

▲ Table 23.4 Examples of half-life

We shall see later that half-life may also be expressed in terms of the activity of the 
material.

If you measure the count rate from an isotope with a very long half-life, you might 
expect to obtain a constant value. In fact, the count rate fluctuates about an average 
value. This demonstrates the random nature of radioactive decay.
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6 Using the half-life values given in Table 23.4, calculate:

a the fraction of a sample of uranium-238 remaining undecayed after  
9.0 × 109 years

b the fraction of a sample of astatine-217 remaining undecayed after 0.30 s

c the fraction of a sample of radium-226 that has decayed after 3200 years

d the fraction of a sample of radon-222 that has decayed after 15.2 days.

In carrying out experiments with radioactive sources, it is important to take account 
of background radiation. In order to determine the count-rate due to the radioactive 
source, the background count-rate must be subtracted from the total measured count-
rate. Allowance for background radiation gives the corrected count rate.

Note that a detector placed near a radioactive source measures the count rate of the 
radiation emitted in the direction of the detector. It does not measure the activity of the 
source. The activity is the total rate of decay of nuclei in the source.

Mathematical descriptions of radioactive decay
Activity and decay constant
As we saw in the dice experiment, increasing the number of dice increases the number 
of sixes that appear with each throw. Similarly, if we investigate the decay of a sample 
of radioactive material, we find that the greater the number of radioactive nuclei in the 
sample the greater the rate of decay.

If there are N nuclei in a sample at time t, then at time (t + dt) some nuclei will have 
decayed so that the number remaining is (N − dN).

For radioactive decay, the probability of decay per unit time is constant, known as the 
decay constant λ.

For radioactive decay, the decay constant λ is the probability per unit time of the 
decay of a nucleus.

The decay constant λ has the units s−1, yr−1 and so on.

In this case,

probability of decay = −dN/N

and

probability of decay per unit time = λ = −(dN/dt)N

This gives

dN
dt

 = −λN

WORKED EXAMPLE 23F

The half-life of francium-221 is 4.8 minutes. Calculate the fraction of a sample of 
francium-221 remaining undecayed after a time of 14.4 minutes.

Answer
The half-life of francium-221 is 4.8 min, so after 4.8 min half of the sample will 
remain undecayed. After two half-lives (9.6 min), 0.5 × 0.5 = 0.25 of the sample will 
remain undecayed. After three half-lives (14.4 min), 0.5 × 0.25 = 0.125 will remain 
undecayed. So the fraction remaining undecayed is 0.125 or 1/8.

Question
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7 Calculate the activity, in Bq, of the following samples of radioactive materials:

a 2.4 × 1015 atoms of strontium-90

 (Decay constant of strontium-90 = 5.0 × 10−8 minute−1.)

b 2.5 μg of uranium-238 (0.238 kg of uranium-238 contains 6.0 × 1023 atoms)

 (Decay constant of uranium-238 = 5.0 × 10−13 s−1.)

Note that a negative sign has been included. This is because as time t increases, the 
number of nuclei remaining, N decreases.

dN/dt is the rate at which the number of nuclei in the sample is changing, so dN/dt 
represents the rate of decay. −dN/dt is known as the activity A of the source, and is 
measured in becquerels.

The activity of a radioactive source is the number of nuclear decays occurring per 
unit time in the source.

Activity is measured in becquerels (Bq), where 1 becquerel is 1 decay per second.

1 Bq = 1  s−1

Note that writing the rate of change of the quantity N with time t in the form dN/dt is 
a shorthand way of expressing the rate, but is not required in Cambridge International 
AS & A Level Physics (see Maths Note in Topic 20.5).

Combining A = − dN/dt and dN/dt = −λN, we have

A = λN

This is an important equation because it relates a quantity we can measure (activity, or 
the rate at which nuclei decay) to a quantity which cannot, in practice, be determined 
(N, the number of undecayed nuclei). We shall see later that the decay constant λ is 
directly related to the half-life t1 

2
 and half-life can be obtained by experiment. This opens 

the way to calculating the number of undecayed nuclei in a sample. Trying to count 
nuclei when they are decaying is similar to counting sheep in a field while some are 
escaping through a gap in the hedge!

WORKED EXAMPLE 23G

Calculate the number of phosphorus-32 nuclei in a sample which has an activity of 
5.0 × 106 Bq.

(Decay constant of phosphorus-32 = 5.6 × 10−7 s−1.)

Answer
From dN/dt = −λN, N = (−dN/dt)/λ = −5.0 × 106/5.6 × 10−7 = −8.9 × 1012.

The minus sign in this answer arises because dN/dt is the rate of decay. 
The quantity measured by a ratemeter is the rate of decay, and so should be 
negative, but it is always displayed as a positive quantity. Similarly, activities in 
becquerel are always quoted as positive. So don’t be worried about discarding the 
minus sign here! The number of phosphorus-32 nuclei = 8.9 × 1012.

Note: In this type of calculation, because the activity is measured in becquerel 
(s−1), the decay constant λ must be measured in consistent units, that is s−1.  
If λ had been quoted as 4.8 × 10−2 day−1, it would have been necessary to 
convert to s−1.

Question
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8 The activity of radon-222 in 1.0 m3 of air in a room is 350 Bq. The decay constant of 
radon-222 is 2.1 × 10−6 s−1. Calculate the time, in days, before the activity in 1.0 m3 
of the air is reduced to 210 Bq.

Decay constant and half-life
Using the equation N = N0e−λt, we can derive an equation which relates the half-life to 
the decay constant. For any radioactive isotope, the number of undecayed nuclei after 
one half-life is, by the definition of half-life, equal to 1

2
 N0, where N0 is the original 

number of undecayed nuclei. Using the radioactive decay equation

N = N0 e
−λt

we have, at time t = t1
 

2

1
2
N0 = N0 exp(−λt1

 

2
)

and, dividing each side of the equation by N0,

0.5 = exp(−λt1
 

2
)

or

2 = exp(λt1
 

2
)

Taking natural logarithms of both sides,

ln 2 = λt1
 

2

To solve the equation dN/dt = −λN requires mathematics beyond the scope of 
Cambridge International AS & A Level Physics. However, it is important to know the 
solution, in order to find the variation with time of the number of nuclei remaining in 
the sample. The solution is

N = N0e−λt or N = N0 exp(−λt)

where N0 is the initial number of undecayed nuclei in the sample, and N is the number 
of undecayed nuclei at time t.

The equation represents an exponential decay. The decay curve of N against t is as 
shown in Figure 23.8. Since activity A is proportional to N (A = λN), the curve of A 
against t is the same shape, and we can write

A = A0 e
 −λt

The equation is also true for received count rate. Thus radioactive decay can be 
represented by the equation

x = x0 e
−λt

where x represents any of activity, number of undecayed nuclei or received count rate.

WORKED EXAMPLE 23H

A sample of phosphorus-32 contains 8.6 × 1012 nuclei at time t = 0. The decay 
constant of phosphorus-32 is 4.8 × 10−2 day−1. Calculate the number of undecayed 
phosphorus-32 nuclei in the sample after 10 days.

Answer
From N = N0e−λt, we have N = 8.6 × 1012 × e−0.048 × 10, so N = 5.3 × 1012.

(Again, it is important to measure λ and t in consistent units. Here λ is in day −1 and 
t is in days, so there is no problem.)

Question
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So that

t1
 

2
 = ln 2/λ

or

t1
 

2
 = 0.693/λ

and λ = 0.693/t1
 

2
.

WORKED EXAMPLE 23I

Calculate the half-life, in years, of radium-226, which has a decay constant of  
1.42 × 10−11 s−1.

Answer
Using t1

 

2
 = 0.693/λ, we have t1

 

2
 = 0.693/1.42 × 10−11 = 4.88 × 1010 s = 1550 years.

SUMMARY

» The mass defect of a nucleus is the difference 
between the total mass of the separate nucleons 
and the mass of the nucleus.

» Einstein’s mass–energy equivalence relation E = mc2.
» The binding energy of a nucleus is the energy 

needed to separate completely all its constituent 
nucleons.

» The binding energy per nucleon is a measure of 
the stability of a nucleus. A higher binding energy 
per nucleon means the nucleus is more stable.

» Nuclear fusion is the joining together of light nuclei 
to form a larger, heavier nucleus.

» Nuclear fission is the splitting of a heavy nucleus 
into two smaller, lighter nuclei of approximately 
equal mass.

» Decay equations and nuclear reactions can be 
represented using nuclide notation

» The mass difference can be used to calculate the 
energy released in nuclear reactions (including 
radioactive decay equations) using E = c2Δm.

» The graph of binding energy per nucleon against 
nucleon number shows that nuclei of low nucleon 
number, and also those of high nucleon number, 

have smaller binding energy per nucleon than 
those nuclei with a nucleon number around 56.

» For this reason, fusion of low nucleon number 
nuclei and fission of a high nucleon number nuclei 
are processes that release energy.

» Radioactive decay is a spontaneous, random 
process.

» The half-life t1
 

2
 of a radioactive nuclide is the time 

taken for the number of undecayed nuclei to be 
reduced to half the original number.

» The activity of a radioactive source is the number 
of nuclei that decay per unit time. The unit of 
activity is the becquerel (Bq). 1 becquerel = 1 s−1.

» The activity A of a source is related to the number 
N of undecayed nuclei by the equation 
A = −λN where λ is the decay constant.

» The decay constant is defined as the probability of 
decay per unit time of a nucleus.

» Radioactive decay is represented by the 
exponential decay equation x = x0e−λt where x is the 
activity or the number of undecayed nuclei or the 
received count rate

» The half-life t1
 

2
 and the decay constant λ are 

related by the equation ln 2 = λt1
 

2
 or t1

 

2
 = 0.693/λ.

 9 Calculate the half-lives of the following radioactive nuclides:

a bismuth-214, which has a decay constant of 5.83 × 10–4 s−1

b carbon-14, which has a decay constant of 4.1 × 10−12 s−1. 

 Give your answers in years.

10 Calculate the decay constant, in s−1, of sodium-24, which has a half-life of 15 h.

Questions
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End of topic questions

END OF TOPIC QUESTIONS

1 Fig. 23.9 shows the variation with time t of the activity of a sample of a radioactive 
nuclide X. The average background count during the experiment was 36 min −1.

t/hour 0 1 2 3 4 5 6 7 8 9 10

activity/min−1 854 752 688 576 544 486 448 396 362 334 284

▲ Figure 23.9

a Plot a graph to show the variation with time t of the corrected count rate.
b Use the graph to determine the half-life of the nuclide X.

2 Calculate the mass defect, the binding energy of the nucleus, and the binding 
energy per nucleon of a nucleus of zirconium-97 (97

40Zr) having a nuclear mass of 
97.09801 u.

 (Proton mass = 1.00728 u; neutron mass = 1.00867 u.)

3 One possible reaction taking place in the core of a nuclear reactor is

 235
92U + 10n → 95

42Mo + 139
57La + 21

0n + 70
−1e

 For this reaction, calculate:
a the change in mass after fission has taken place,
b the energy released per fission of uranium-235,
c the energy available from the complete fission of 1.00 g of uranium-235,
d the mass of uranium-235 used by a 500 MW nuclear power station in one hour, 

assuming 30% efficiency.

 (Masses: U, 235.123 u; Mo, 94.945 u; La, 138.955 u; proton, 1.007 u; neutron, 1.009 u.
 0.235 kg of uranium-235 contains 6.0 × 1023 atoms.)

4 Two fusion reactions which take place in the Sun are described below.
a A hydrogen-2 (deuterium) nucleus absorbs a proton to form a helium-3 nucleus.
b Two helium-3 nuclei fuse to form a helium-4 nucleus plus two free protons.
 For each reaction, write down the appropriate nuclear equation and calculate 

the energy released.

 (Masses: 21H, 2.01410 u; 32He, 3.01605 u; 42He, 4.00260 u; 11p, 1.00728 u; 10n, 1.00867 u.)

5 Calculate the mass of caesium-137 that has an activity of 2.5 × 105 Bq.

 The number of atoms in 0.137 kg of caesium-137 is 6.0 × 1023. The half-life of 
caesium-137 is 30 years.

6 a The activity of a radioactive source X falls from 4.5 × 1010 Bq to 1.2 × 1010 Bq in 
5.0 hours.

 Calculate the half-life.
b The activity of a certain mass of carbon-14 is 3.60 × 109 Bq. The half-life of 

carbon-14 is 5570 years.
 Calculate the number of carbon-14 nuclei in the sample.
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7 a  State what is meant by radioactive decay. [2]

b The variation with time t of the number N of technetium-101 nuclei in a sample 
of radioactive material is shown in Fig. 23.10.

10 20 40
0

2.0

4.0

6.0

8.0

10.0

30

N
/1

07

t /min

▲ Figure 23.10
i Use Fig. 23.10 to determine the activity, in Bq, of the sample of 

technetium-101 at time t = 14.0 minutes. Show your working. [4]
ii Without calculating the half-life of technetium-101, use your answer in i to 

determine the decay constant λ of technetium-101. [2]

Cambridge International AS and A Level Physics (9702) Paper 41 Q13 May/June 2018
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A LEVEL

Medical physics

Learning outcomes
By the end of this topic, you will be able to:

24.1 Production and use of ultrasound
1  understand that a piezo-electric crystal 

changes shape when a p.d. is applied 
across it and that the crystal generates an 
e.m.f. when its shape changes

2  understand how ultrasound waves are 
generated and detected by a piezo-electric 
transducer

3  understand how the reflection of pulses 
of ultrasound at boundaries between 
tissues can be used to obtain diagnostic 
information about internal structures

4  define the specific acoustic impedance of a 
medium as Z = ρc, where c is the speed of 
sound in the medium

5  use IR/I0 = (Z1 − Z2)
2/(Z1 + Z2)

2 for the 
intensity reflection coefficient of a 
boundary between two media

6  recall and use I = I0e−μx for the attenuation 
of ultrasound in matter

24.2 Production and use of X-rays
1  explain that X-rays are produced by 

electron bombardment of a metal target 
and calculate the minimum wavelength of 
X-rays produced from the accelerating p.d.

2  understand the use of X-rays in imaging 
internal body structures, including an 
understanding of the term contrast in X-ray 
imaging

3  recall and use I = I0e−μx for the attenuation 
of X-rays in matter

4  understand that computed tomography 
(CT) scanning produces a 3D image of 

an internal structure by first combining 
multiple X-ray images taken in the same 
section from different angles to obtain a  
2D image of the section, then repeating this 
process along an axis and combining  
2D images of multiple sections

24.3 PET scanning
1  understand that a tracer is a substance 

containing radioactive nuclei that can 
be introduced into the body and is then 
absorbed by the tissue being studied

2  recall that a tracer that decays by β+ decay 
is used in positron emission tomography 
(PET scanning)

3  understand that annihilation occurs when 
a particle interacts with its antiparticle 
and that mass-energy and momentum are 
conserved in the process

4  explain that, in PET scanning, positrons 
emitted by the decay of the tracer 
annihilate when they react with electrons 
in the tissue, producing a pair of gamma-
ray photons travelling in opposite 
directions

5  calculate the energy of the gamma-ray 
photons emitted during the annihilation of 
an electron–positron pair

6  understand that the gamma-ray photons 
from an annihilation event travel outside 
the body and can be detected, and an 
image of the tracer concentration in the 
tissue can be created by processing  
the arrival times of the gamma-ray 
photons

 24 
24 M

edical physics
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24.1 Production and use of ultrasound in diagnosis
The production and use of ultrasound in diagnosis
Ultrasound is sound with frequencies above the range of human hearing, typically 
above about 20 kHz. The range of frequencies of ultrasound used in medical diagnosis is 
typically even higher, up to about 10 MHz. As with sound waves, ultrasound waves are 
longitudinal pressure waves

Ultrasound waves may be generated using a piezo-electric transducer. A transducer 
is the name given to any device that converts energy from one form to another. In this 
case, electrical energy is converted into ultrasound energy by means of a piezo-electric 
crystal such as quartz.

The structure of quartz is made up of a large number of tetrahedral silicate units, as 
shown in Figure 24.1. These units build up to form a crystal of quartz that can be 
represented, in two dimensions, as shown in Figure 24.2.

Starting points
★ The wave nature of sound and X-rays.
★ X-rays have much shorter wavelengths than visible light.
★ All types of waves can be reflected.
★ An understanding of the terms wavelength, frequency, speed, amplitude 

and intensity.
★ X-ray radiation is part of the electromagnetic spectrum.
★ X-ray radiation is highly penetrating in soft body tissues.
★ Isotopes are different forms of the same element.
★ Radioactive decay can occur by alpha, beta or gamma decay.
★ A positron along with an electron neutrino may be emitted during 

radioactive decay.
★ The positron is the antiparticle of an electron.

silicon ion,
positively
charged

oxygen ion,
negatively
charged

▲ Figure 24.1 Tetrahedral 
silicate unit

▲ Figure 24.2 Two-dimensional representation of a 
quartz crystal

When the crystal is unstressed, the centres of charge of the positive and the negative 
ions in any one unit coincide, as shown in Figure 24.3a. Electrodes may be formed 
on opposite sides of the crystal by depositing silver on its surfaces. When a potential 
difference is applied between the electrodes, an electric field is set up in the crystal. 
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This field causes forces to act on the ions. The oxygen ions are negatively charged 
and the silicon ions have a positive charge. The ions are not held rigidly in position 
and, as a result, they will be displaced slightly when the electric field is applied across 
the crystal. The positive ions will be attracted towards the negative electrode and the 
negative ions will be attracted to the positive electrode. Dependent on the direction 
of the electric field, the crystal will become slightly thinner (Figure 24.3b) or slightly 
thicker (Figure 24.3c).

An alternating voltage applied across the electrodes causes the crystal to vibrate with 
a frequency equal to that of the applied voltage. These oscillations are likely to have 
a small amplitude. However, if the frequency of the applied voltage is equal to the 
natural frequency of vibration of the crystal, resonance will occur (see Topic 17.3) 
and the amplitude of vibration will be a maximum. The dimensions of the crystal can 
be such that the oscillations are in the ultrasound range of frequencies (greater than 
about 20 kHz). These oscillations will give rise to ultrasound waves in any medium 
surrounding the crystal.

If a stress is applied to an uncharged quartz crystal, the forces involved will alter 
the positions of the positive and the negative ions, creating a potential difference 
across the crystal. Therefore, if an ultrasound wave is incident on the crystal, the 
pressure variations in the wave will give rise to voltage variations across the crystal. 
An ultrasound transducer may, therefore, also be used as a detector (or receiver).

A simplified diagram of a piezo-electric transducer/receiver is shown in Figure 24.4.

earthed
metal case backing

material plastic cover
and lens

piezo-electric
crystal

electrodes

coaxial
cable

▲ Figure 24.4 Piezo-electric transducer/receiver

A transducer such as this is able to produce and detect ultrasound in the megahertz 
frequency range, which is typical of the frequency range used in medical diagnosis.

++ +

–– –

–– –

++ +

a) UNSTRESSED b) COMPRESSED c) EXTENDED

electrode

▲ Figure 24.3 The effect of an electric field on a quartz crystal
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The reflection and absorption of ultrasound
Ultrasound is typical of many types of wave in that, when it is incident on a boundary 
between two media, some of the wave power is reflected and some is transmitted.  
This is illustrated in Figure 24.5.

incident wave,
intensity I

transmitted wave,
intensity IT

reflected wave,
intensity IR

boundary between
media

▲ Figure 24.5 The reflection and transmission of a wave at a boundary

For a wave of incident intensity I, reflected intensity IR and transmitted intensity IT, by 
conservation of energy, then

I = IR + IT

Although, for a beam of constant intensity, the sum of the reflected and transmitted 
intensities is constant, their relative magnitudes depend not only on the angle of 
incidence of the beam on the boundary but also on the media themselves. The relative 
magnitudes of IR and IT are quantified by reference to the specific acoustic impedance 
Z of each of the media. This is defined as the product of the density ρ of the medium 
and the speed c of the wave in the medium. That is,

Z = ρc

For a wave incident normally on a boundary between two media having specific 
acoustic impedances of Z1 and Z2, the ratio of the reflected intensity IR to the incident 
intensity I0 is given by

IR
I0

 = 
(Z2 – Z1)

2

(Z2 +  Z1)
2

The ratio IR/I0 is known as the intensity reflection coefficient for the boundary and is 
given the symbol α. As the above equation shows, α depends on the difference between 
the specific acoustic impedances of the two media. As such, the intensity reflection 
coefficient can give information about the nature of the two media making up the 
boundary. Some typical values of specific acoustic impedance are given in Table 24.1, 
together with the approximate speed of ultrasound in the medium.

medium speed/m s–1 specific acoustic impedance/kg m–2 s–1

air 330 430
blood 1600 1.6 × 106

bone 4100 5.6 × 106 – 7.8 × 106

fat 1500 1.4 × 106

muscle 1600 1.7 × 106

soft tissue 1600 1.6 × 106

water 1500 1.5 × 106

▲ Table 24.1 Values of speed of ultrasound and specific acoustic impedance for some media
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WORKED EXAMPLE 24A

Using data from Table 24.1, calculate the intensity reflection coefficient for a parallel 
beam of ultrasound incident normally on the boundary between:
a air and soft tissue
b muscle and bone that has a specific acoustic impedance of 6.5 × 106 kg m–2 s–1.

Answers
 a α = (Z2 – Z1)

2/(Z2 +  Z1)
2

 = (1.6 × 106 – 430)2/(1.6 × 106 + 430)2

 = 0.999
b α = (6.5 × 106 – 1.7 × 106)2/(6.5 × 106 + 1.7 × 106)2

 = 0.34

1 Using data from Table 24.1:

a suggest why, although the speed of ultrasound in blood and muscle is 
approximately the same, the specific acoustic impedance is different 

b calculate the intensity reflection coefficient for a parallel beam of ultrasound 
incident normally on the boundary between fat and muscle.

It can be seen that the intensity reflection coefficient for a boundary between air 
and soft tissue is approximately equal to unity. This means that, when ultrasound is 
incident on the body, very little is transmitted into the body. In order that ultrasound 
may be transmitted into the body and also that the ultrasound may return to the 
transducer, it is important that there is no air between the transducer and the skin 
(soft tissue). This is achieved by means of a water-based jelly. This jelly has a specific 
acoustic impedance of approximately 1.5 × 106 kg m–2 s–1 which is very similar to 
the specific acoustic impedance of skin. Thus there is very little reflection of the 
ultrasound beam as it enters the body.

The attenuation of ultrasound
Once the ultrasound wave is within the medium, the intensity of the wave will be 
reduced (attenuated) by absorption of energy as it passes through the medium. The 
medium is heated. In fact, the heating effect produced by ultrasound of appropriate 
frequencies is used in physiotherapy to assist recovery from sprains and similar 
injuries.

Mathematical description of reduction in intensity
For a parallel beam of ultrasound, the reduction in intensity is approximately 
exponential and is shown in Figure 24.6 (overleaf). The percentage transmission 
decreases by the same fraction over equal thicknesses of absorber. A similar 
exponential attenuation is observed when a parallel beam of X-ray radiation passes 
through a medium (see Topic 24.2).

Question
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▲ Figure 24.6 The percentage transmission of ultrasound in a medium

For such a beam of ultrasound incident normally on a medium of thickness x, the 
transmitted intensity I is related to the incident intensity I0 by the expression

I = I0 e
–μx or I = I0 exp(–μx)

where μ is a constant for the medium known as the linear absorption (or attenuation) 
coefficient. The coefficient μ depends not only on the medium itself but also on the 
frequency of the ultrasound. Some typical values of the linear absorption (attenuation) 
coefficient are shown in Table 24.2. The unit of μ is mm–1 or cm–1. If the unit of x is 
given in cm the unit of μ must be given in cm–1.

medium linear absorption (attenuation) coefficient/cm–1

air 1.2

bone 0.13

muscle 0.23

water 0.0002

▲ Table 24.2 Some values of linear absorption (attenuation) coefficient for ultrasound

Note that the expression for the change in the transmitted intensity applies only to a 
parallel beam. If the beam is divergent, then the intensity would decrease without any 
absorption by the medium.

WORKED EXAMPLE 24B

A parallel beam of ultrasound is incident on the surface of a muscle and passes through a 
thickness of 3.5 cm of the muscle. It is then reflected at the surface of a bone and returns 
through the muscle to its surface. Using data from Tables 24.1 and 24.2, calculate the 
fraction of the incident intensity that arrives back at the surface of the muscle.

Answer
The beam passes through a total thickness of 7.0 cm of muscle. For the attenuation 
in the muscle,

I = I0 exp(–0.23 × 7.0) = 0.20I0

Fraction reflected at muscle–bone interface = (6.5 × 106 – 1.7 × 106)2/(6.5 × 106 + 1.7 × 106)2

 = 0.34

Fraction received back at surface = 0.20 × 0.34 = 0.068
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2 A parallel beam of ultrasound passes through a thickness of 4.0 cm of muscle. 

It is then incident normally on a bone having a specific acoustic impedance of 
6.4 × 106 kg m–2 s–1. The bone is 1.5 cm thick. Using data from Tables 24.1 and 24.2, 
calculate the fraction of the incident intensity that is transmitted through the muscle 
and bone.

Obtaining diagnostic information using ultrasound
The ultrasound transducer is placed on the skin, with the water-based jelly excluding 
any air between the transducer and the skin (Figure 24.7).

Short pulses of ultrasound are transmitted into the body where they are partly reflected 
and partly transmitted at the boundaries between media in the body such as fat–muscle 
and muscle–bone. The reflected pulses return to the transducer where they are detected 
and converted into voltage pulses. These voltage pulses can be amplified and processed 
by electronic circuits such that the output of the circuits may be displayed on a screen as 
in, for example, a cathode-ray oscilloscope.

Pulses of ultrasound are necessary so that the reflected ultrasound pulses can be 
detected in the time intervals between the transmitted pulses. The time between the 
transmission of a pulse and its receipt back at the transducer gives information as to the 
distance of the boundary from the transducer. The intensity of the reflected pulse gives 
information as to the nature of the boundary. Two techniques are in common use for the 
display of an ultrasound scan.

In an A-scan, a short pulse of ultrasound is transmitted into the body through the 
coupling medium (the water-based jelly). At each boundary between media, some of the 
energy of the pulse is reflected and some is transmitted. The transducer detects the 
reflected pulses as it now acts as the receiver. The signal is amplified and displayed on a 
cathode-ray oscilloscope (CRO). Reflected pulses (echoes) received at the transducer 
from deeper in the body tend to have lower intensity than those reflected from 
boundaries near the skin. This is caused not only by absorption of wave energy in the 
various media but also, on the return of the reflected pulse to the transducer, some of 
the energy of the pulse will again be reflected at intervening boundaries. To allow for 
this, echoes received later at the transducer are amplified more than those received 
earlier. A vertical line is observed on the screen of the CRO corresponding to the 
detection of each reflected pulse. The time-base of the CRO is calibrated so that, 
knowing the speed of the ultrasound wave in each medium, the distance between 
boundaries can be determined. An example of an A-scan is illustrated in Figure 24.8.

1

2

3

1 transmitted pulse

3 muscle–bone boundary

fat–muscle boundary2

▲ Figure 24.8 An A-scan

▲ Figure 24.7 Ultrasound 
diagnosis

Question
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A B-scan consists of a series of A-scans, all taken from different angles so that, on the screen 
of the CRO, a two-dimensional image is formed. Such an image is shown in Figure 24.9.

▲ Figure 24.9 An image of a healthy heart produced from a B-scan

The ultrasound probe for a B-scan does not consist of a single crystal. Rather, it has an array 
of small crystals, each one at a slightly different angle from its neighbours. The separate 
signals received from each of the crystals in the probe are processed. Each reflected pulse 
is shown on the screen of the CRO as a bright spot in the direction of orientation of the 
particular crystal that gave rise to the signal. The pattern of spots builds up to form a two-
dimensional image representing the positions of the boundaries within the body. The image 
may be either viewed immediately or photographed or stored in a computer memory.

The main advantage of ultrasound scanning compared to X-ray imaging is that the 
health risk to both the patient and to the operator is very much less. Also, ultrasound 
equipment is much more portable and is relatively simple to use.

Higher-frequency ultrasound enables greater resolution to be obtained since the 
wavelength will be shorter and there will be less diffraction around small features.  
That is, more detail can be seen. Furthermore, as modern techniques allow for the 
detection of very low-intensity reflected pulses, boundaries between tissues where there 
is little change in specific acoustic impedance can be detected.

24.2 Production and use of X-rays

▲ Figure 24.10 Modern X-ray machine
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Whenever a charged particle is accelerated, electromagnetic radiation is emitted. This 
radiation is known as Bremmstrahlung radiation or ‘braking’ (slowing down) radiation. 
The frequency of the radiation depends on the magnitude of the acceleration. The larger 
the acceleration (or deceleration), the greater is the frequency of the emitted photon.

X-ray photons may be produced by the bombardment of metal targets with high-speed 
electrons. The electrons are first accelerated through a potential difference of many 
thousands of volts so that they have high energy and high speed. This acceleration is, 
however, not sufficient for X-ray radiation to be emitted. The high-speed electrons strike 
a metal target, which causes the electrons to change direction and to lose kinetic energy 
very rapidly. Large decelerations are involved that give rise to the emission of X-ray 
photons. It should be remembered that not all of the energy of the electrons is emitted as 
X-ray photons. The majority is transferred to thermal energy in the target metal.

A simplified design of an X-ray tube is shown in Figure 24.11.

+-

target
heated metal
filament
(cathode)

high voltage

evacuated tube

X-ray window

low voltage

cooled metal
anode

▲ Figure 24.11 Design of an X-ray tube

Varying the X-ray wavelength produced
A typical X-ray spectrum showing the variation with wavelength of the intensity of an 
X-ray beam is shown in Figure 24.12.

0

in
te

ns
ity

wavelengthλ 0

▲ Figure 24.12 Typical X-ray spectrum

The spectrum has two distinct components. First, there is a continuous distribution of 
wavelengths with a sharp cut-off at the shortest wavelength λ0. Second, sharp peaks 
may be observed. These sharp peaks correspond to the emission line spectrum of the 
target metal and are, therefore, a characteristic of the target (see Topic 22.4).
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The continuous distribution comes about because the electrons, when incident on 
the metal target, will not all have the same deceleration but will, instead, have a 
wide range of values. Since the wavelength of the emitted radiation is dependent on 
the deceleration, there will be a distribution of wavelengths. The cut-off wavelength 
corresponds to an electron that is stopped in one collision in the target so that all of its 
kinetic energy is given up as one X-ray photon.

The kinetic energy Ek of an electron is equal to the energy gained by the electron when it 
is accelerated from the cathode to the anode.

Ek = eV

where e is the charge on the electron and V is the accelerating potential difference.

The energy E of a photon of wavelength λ is given by (see Topic 22.1)

E = hc/λ

where h is the Planck constant. Thus, at the cut-off (minimum) wavelength λ0,

eV = hc/λ0

and so

λ0 = hc
eV

The accelerating potential V thus determines the cut-off wavelength λ0. The larger the 
potential difference, the shorter the wavelength. The hardness (penetrating ability) of the 
X-ray beam is, therefore, controlled by variation of the accelerating potential difference 
between the cathode and the anode.

The continuous distribution of wavelengths implies that there will be X-ray photons 
of long wavelengths that would not penetrate the person being investigated and so 
would not contribute towards the X-ray image. Such long-wavelength photons would 
add to the radiation dose received by the person without serving any useful purpose. 
For this reason, the X-ray beam emerging from the X-ray tube frequently passes through 
aluminium filters that absorb these long-wavelength photons.

WORKED EXAMPLE 24C

The accelerating potential difference between the cathode and the anode of an 
X-ray tube is 30 kV. Given that the Planck constant is 6.63 × 10–34 J s, the charge on 
the electron is 1.60 × 10–19 C and the speed of light in free space is 3.00 × 108 m s–1, 
calculate the minimum wavelength of photons in the X-ray beam.

Answer
For the minimum wavelength,

energy gained by electron = energy of photon

eV = hc/λ0

1.60 × 10–19 × 30 × 103 = 
(6.63 × 10–34 × 3.00 × 108)

λ0λ0 = 4.14 × 10 –11 m

3 Calculate the minimum wavelength of photons produced in an X-ray tube for an 
accelerating potential difference of 75 kV.

Question
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The X-ray image
An X-ray image is shown in Figure 24.13. This is not really an image in the sense of 
the real image produced by a lens. Rather, the image is like a shadow, as illustrated in 
Figure 24.14.

black when developed

black when developed

white

bone soft tissue X-ray film

X-ray 
beam

▲ Figure 24.14 How an X-ray image is produced

The X-ray beam is incident on the body part of the patient. The X-ray beam can 
penetrate soft tissues (skin, fat, muscle, etc.) with little loss of intensity and so 
photographic film, after development, will show a dark area corresponding to these soft 
tissues. Bone, however, causes a greater attenuation (reduces the intensity by a greater 
extent) than the soft tissues and, therefore, the photographic film will be lighter in 
colour in areas corresponding to the positions of bones. What is produced on the film is 
a two-dimensional shadow of the bone and the surrounding tissues.

The quality of the shadow image produced depends on its contrast. A shadow image 
where the bones and other organs are clearly outlined is said to be a ‘sharp image’. 
Although an image may be sharp, it may still not be clearly visible because there is 
little difference in the degree of blackening between, say, the bone and the surrounding 
tissue. An X-ray image having a wide range of degrees of blackening in different regions 
is said to have good contrast.

Good contrast is achieved when neighbouring body organs and tissues absorb the X-ray 
photons to very different extents (see The attenuation of X-rays, below). This is usually 
the case for bone and muscle. This is, however, not the case where, for example, the 
stomach is to be investigated. The patient is then asked to swallow a solution of barium 
sulfate – a ‘barium meal’ (Figure 24.15).

Barium is a good absorber of X-ray photons. As a result, when the barium sulfate 
solution coats the inside of the stomach, the outline of the stomach will show up clearly 
on the image. Similarly, blood vessels can be made visible by injecting a radio-opaque 
dye into the bloodstream.

Contrast also depends on other factors, such as exposure time. Contrast may be 
improved by backing the X-ray film with a fluorescent material.

The attenuation of X-rays
When a beam of X-ray photons passes through a medium, absorption processes occur 
that reduce the intensity of the beam. The intensity of a parallel beam is reduced by 
the same fraction each time the beam passes through equal thicknesses of the medium. 
Consequently, the variation of the percentage of the intensity transmitted with thickness 
of absorber may be shown as in Figure 24.16 (overleaf).

▲ Figure 24.15 X-ray of 
stomach after a barium 
meal

▲ Figure 24.13 X-ray 
image showing a 
fractured collar bone
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▲ Figure 24.16 The percentage transmission of X-rays in a medium

It can be seen that the same thickness of medium is always required to reduce the 
transmitted beam intensity by 50%, no matter what starting point is chosen. This is 
analogous to the constant half-life of radioactive decay, and is due to the exponential nature 
of both radioactive decay and the attenuation with distance of a parallel beam of radiation.

The decrease in transmitted X-ray intensity is an exponential decrease. Consider a 
parallel beam having an incident intensity I0. The medium (the absorber) has thickness 
x and the transmitted intensity is I, as illustrated in Figure 24.17.

The transmitted intensity is given by the expression

I = I0 e
–μx or I = I0 exp(–µx )

where µ is a constant that is dependent on the medium and on the energy of the 
X-ray photons, known as the linear attenuation coefficient or the linear absorption 
coefficient of the medium. The unit of µ is mm–1 or cm–1.

Approximate values of the linear attenuation (absorption) coefficient µ for some 
substances are given in Table 24.3.

Note that the expression I = I0 exp(–µx) applies to a parallel beam. If the beam is not 
parallel, then there will be further changes in intensity without any absorption.  
For example, the intensity of a divergent beam decreases with distance from the source.

WORKED EXAMPLE 24D

The linear absorption coefficient of copper is 0.693 mm–1. Calculate:
a the thickness of copper required to reduce the incident intensity by 50%
b the fraction of the incident intensity of a parallel beam that is transmitted 

through a copper plate of thickness 1.2 cm.

Answers
a I/I0 = 0.50 = exp(–0.693 × x)

ln 0.50 = –0.693x
x = 1.0 mm

b I/I0 = exp(–0.7 × 1.2)

 I/I0 = 2.4 × 10–4

substance µ/cm–1

copper 7

water 0.3

bone 3

fat 0.9

incident

intensity I0

transmitted

intensity I

x

▲ Figure 24.17 Absorption 
of X-rays in a medium

▲ Table 24.3 Some 
approximate values 
of linear attenuation 
(absorption) coefficient
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4 a State what is meant by the contrast in an X-ray image.

b Explain how the contrast in an X-ray image may be improved.

5 For one particular energy of X-ray photons, water has a linear attenuation 
(absorption) coefficient of 0.29 cm–1. Calculate the depth of water required to reduce 
the intensity of a parallel beam of these X-rays to 3.0 × 10–3 of its incident intensity.

6 The linear attenuation (absorption) coefficients of bone and of the soft tissues 
surrounding the bone are 2.9 cm–1 and 0.95 cm–1 respectively. A parallel beam of 
X-rays is incident, separately, on a bone of thickness 3.0 cm and on soft tissue of 
thickness 5.0 cm. Calculate the ratio:

intensity transmitted through bone

intensity transmitted through soft tissue

Computed tomography (CT scanning)
The image produced on X-ray film, as outlined earlier, is a ‘shadow’ or ‘flat’ image.  
There is little, if any, indication of depth. That is, the position of an organ within the 
body is not apparent. Also, soft tissues lying behind structures that are very dense 
cannot be detected. Tomography is a technique whereby a three-dimensional image 
or ‘slice’ through the body may be obtained. The image is produced by computed 
tomography using what is known as a CT scanner (Figure 24.18). An example of such 
an image is shown in Figure 24.19.

Questions

▲ Figure 24.18 Radiologist moving a patient into a CT scanner

▲ Figure 24.19 Scan through the head of a 
patient with a cerebral lymphoma
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In this technique, a series of X-ray images is obtained. Each image is taken through the 
same section or slice of the body from a different angle, as illustrated in Figure 24.20.

person’s
body

X-ray
detectors

X-ray
beam

direction of
rotation of detectors

▲ Figure 24.20 Arrangement for a CT scan

Data for each individual X-ray image and angle of viewing is fed into a high-power 
computer. A two-dimensional image of the slice is computed. This is then repeated for 
successive slices. The computer enables the images of each slice to be combined so that 
a complete three-dimensional image of the whole object is obtained, which can then be 
viewed from any angle.

EXTENSION

The basic principles of CT scanning may be illustrated using a simple cubic shape as 
shown in Figure 24.21.

3 4

8 5

a)

b)

3 4

8 5

a)

b)

▲ Figure 24.21 The first section showing the pixels

The aim of CT scanning is to produce an image of a section through the cube from 
measurements made about its axis. The section, or ‘slice’ through the cube is divided 
up into a series of small units, called voxels. Each voxel will absorb the X-ray beam 
to a different extent. The intensity transmitted through each voxel alone can be given 
a number, referred to as a pixel. The various pixels are built up from measurements 
of the X-ray intensity along different directions through the section or slice.

Suppose that the cube in Figure 24.21a is divided into eight voxels. The cube can be 
thought to consist of two slices or sections. For the first section, let the pixels be as 
shown in Figure 24.21b. The purpose of the CT scan is to reproduce these pixels in 
their correct positions.

When the X-ray beam is directed at the section from the left, as shown in 
Figure 24.22, the detectors will give readings of 7 and 13. The voxels will be partially 
completed as shown.
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3 4 7

138 5

7 7

13 13

7

13

detector
readings

readings matched
to voxels

▲ Figure 24.22 The first set of detector readings

The X-ray tube and the detectors are now rotated through 45°. The new detector 
readings are 4, 8 and 8. These readings are added to the readings already in the 
voxels, as shown in Figure 24.23.

3 4

8 5

7 7

13 13

15 11

21 21

detector
readings

readings added
to voxels

4
8

8

4

8
8

+

▲ Figure 24.23 The second set of detector readings

After rotation through a further 45°, a third set of detector readings is taken. 
These readings are added to the voxel readings. The result is shown in Figure 24.24.

3 4

8 5

26 20

32 30

15 11

21 21

readings added
to voxels

+

911

911

detector
readings

▲ Figure 24.24 The third set of detector readings

After rotation through a further 45° a final set of readings is taken. Once again 
the readings are added to those already in the voxels, giving the result shown in 
Figure 24.25 (overleaf).
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3 4

8 5

29 32

44 35

26 20

32 30

readings added
to voxels

+

3
12

5

detector
readings

3

12
5

▲ Figure 24.25 The fourth set of detector readings

The resulting pattern of the pixels is shown in Figure 24.26a.

29 32

44 35

9 12

24 15

3 4

8 5

deduct 20 divide by 3

a) b) c)

▲ Figure 24.26 The final result

Having summed all the measurements, it remains to reduce these measurements to 
that of the original. This is achieved in two stages.

1 The background intensity must be removed. This background is equal to the 
sum of the detector readings for any one position. In this case, the sum is 20. 
This background is deducted from each pixel, as shown in Figure 24.26b.

2 Allowance must now be made for the fact that more than one view was made of 
the section. In this example, there were four sets of readings and consequently 
each pixel reading is divided by 3.

The final result is shown in Figure 24.26c – and, note, this is the same as 
Figure 24.21b.

Once the pattern of pixels for one section has been obtained, the CT scanner is moved 
relative to the object so that the next neighbouring section is analysed. This procedure 
is repeated until the whole of the object to be analysed has been scanned.

The analysis above is a very simple example. In practice, the image of each section 
is built up from a large number of units or voxels. The larger the number of voxels, 
the better the definition. This is similar, in principle, to the digital camera. The use 
of a large number of voxels implies that measurements must be made from a large 
number of different angles. The storage of the data for each angle and its construction 
into a final image on a screen requires a powerful computer. The reconstruction of 
the intensity in each voxel will involve more than one million separate computations. 
All the data for all the sections is stored in the computer memory so that a three-
dimensional image of the whole object is formed. This enables sections of the 
image to be viewed from many different angles. Finally, the computer enables the 
brightness and contrast of the image to be varied so that the optimum image may 
be obtained.
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WORKED EXAMPLE 24E

Compare the image produced during an X-ray investigation and that produced in  
CT scanning.

Answer
An X-ray image is a two dimensional projection onto a flat screen of a three-dimensional 
object. A CT scan is a three-dimensional image. The computer in which the data for the 
image is stored enables different sections to be viewed at different angles.

7 The principles of CT scanning have been understood for some time. However, scanners 
could not be developed until large powerful computers were available. By reference to 
the image produced in a CT scan, suggest why such a computer is necessary.

8 a Outline how X-ray images are used to build up the image produced in a CT scan.
b Explain why the radiation dose received during a CT scan is greater than that for 

an X-ray ‘photograph’.

24.3 PET scanning
Radioactive tracers
Isotopes are different forms of the same element that have different number of neutrons 
in their nuclei (Topic 11.1) but have the same chemical properties. Some isotopes of an 
element have unstable nuclei and so are radioactive which means that these isotopes give 
off radiation (α-particles, β-particles and/or γ-radiation). This radiation can be detected 
and thus the presence of the radioactive material can be established.
If a chemical compound has one or more of its atoms replaced by radioactive atoms of 
the same element then, as a result of the radioactive decay of these atoms, the location of 
the compound can be determined or its progress in living tissues can be followed.  
Such compounds are known as tracers.

A tracer is a chemical compound in which one or more of its atoms have been 
replaced by radioactive nuclei of the same element that can then be used to locate 
or follow the progress of the compound in living tissues.

Tracers used in medical imaging are usually introduced into the body by injection or 
are swallowed. They then travel in the blood to tissues where the tracer compound is 
absorbed. Different tracer compounds are absorbed in different amounts by different 
tissues depending on the biological process being carried out, so the choice of tracer 
depends on the tissue being studied.

Since the radiation emitted by the tracer must be detected from outside the body, 
generally, only gamma emitters can be used as tracers. Alpha and beta radiation are 
much less penetrating and would be absorbed by the body.

The advantage of tracers is that the radioactive compound behaves chemically in the same 
way as the compound without the tracer and so any biological process is not affected.

In many uses of tracers in medical imaging, the tracer has a half-life of just a few hours 
so that the risk to the patient or medical staff of exposure to radiation is reduced. 
Radiation exposure is a disadvantage of the use of tracers but this is offset by a 
technique for diagnosis that is non-invasive and does not require surgery or the taking 
of biopsies (samples of tissue).

A commonly used tracer is technetium-99m. This radioactive isotope has a half-life 
of 6 hours and can be generated where it is to be used. Technetium-99m is used to 
image the skeleton and organs including heart muscle, the brain and the thyroid gland. 
Accumulation of technetium-99m in the skeleton is shown in Figure 24.27.

Questions

▲ Figure 24.27 This 
gamma scan used the 
tracer technetium-99 to 
detect abnormal activity 
in bone metabolism.
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Other frequently used tracers include iodine-131 (for thyroid conditions), iron-59 (for 
spleen metabolism) and potassium-42 (for blood composition).

Positron emission and annihilation
Positron emission tomography (PET) uses radioactive tracers. The tracers used in a 
PET scan decay by β+ emission. The emission of a positron during β+ decay occurs 
when a proton inside a nucleus is converted into a neutron (see Topic 11.1). The 
emission also includes an electron neutrino. An example of such a decay is that of 
fluorine-18:

18
9F → 18

8O → + 01e + 00v

Fluorine-18 is very frequently used as the tracer in PET scanning (see below).  
Other positron emitters include magnesium-23 and sodium-23.

Within a very short time of a positron being emitted, the positron slows and it collides with 
an electron. An electron is the antiparticle of a positron. Annihilation occurs when a particle 
interacts with its antiparticle. The mass of the two particles is converted into energy through 
Einstein’s mass–energy relation E = Δmc2, where c is the speed of light (see Topic 23.1).

When particles and antiparticles meet, they annihilate each other, releasing their 
combined mass as energy in the form of photons.

During the process of annihilation, conservation laws are followed. Namely

» charge: the positive charge and the negative charge on the particle and antiparticle 
are equal in magnitude. The overall charge remains as zero.

» mass-energy: when the particle and the antiparticle collide, since mass and energy 
are equivalent, the total mass-energy before annihilation must equal the total mass-
energy after the annihilation.

» momentum: momentum is conserved so the total momentum before annihilation 
must equal the total momentum after annihilation.

Annihilation produces energy in the form of photons. Since we can assume that the 
positron and electron collide with negligible initial momentum, for the momentum 
to remain zero after annihilation, then the resulting energy is seen as two photons of 
equal energy moving in opposite directions. Each photon has momentum and the total 
momentum of the photons is zero.

Also, since we can assume that the positron and electron collide with negligible initial 
kinetic energies, the total energy of the two photons produced must be equal to the 
energy equivalent of the loss in mass.

Consider the annihilation of an electron–positron pair:

0
–1e + 01e →  γ + γ

Each particle has mass m of 9.11 × 10–31kg. The total photon energy is given by  
E = Δmc2, where c is the speed of light.

E = 2 × (9.11 × 10–31) × (3.00 × 108)2

 = 1.64 × 10–13 J

Since 1 MeV = 1.60 × 10–13 J, then

E = (1.64 × 10–13/(1.60 × 10–13) = 1.02 MeV

The energy of each photon emitted as a result of the annihilation is thus 0.512 MeV.

The frequency of each photon is found from E = hf:

f = E/h = 1
2
 × 1.64 × 10–13/6.63 × 10–34 = 1.24 × 1020 Hz

This frequency is in the gamma ray range of the electromagnetic spectrum.
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The PET scanner
A PET scanner is used in medical imaging and diagnosis to determine how well certain 
body functions are operating and to identify abnormalities.

A commonly used tracer in PET scanning is fluorodeoxyglucose (FDG) which is labelled 
with radioactive fluorine. This fluorine is a positron emitter (see above) and has a half-
life of 118 minutes. FDG is a naturally occurring sugar that does not interfere with any 
body functions. Using the radioactive tracer it is possible to analyse where the FDG 
builds up, or does not build up. For example, cancer tissues tend to accumulate sugars 
to a greater extent than healthy tissue.

For a PET scan, the patient is surrounded by a ring of γ-ray detectors. When a positron 
annihilates, two γ-ray photons are emitted, having the same energy but in opposite 
directions. The energy of the photons is sufficient for them to leave the body and 
be detected. If two detectors, on opposite sides of the patient, detect a γ-ray photon 
simultaneously, then it is known that the positron annihilation took place along the 
straight line joining the two detectors. The direction of this line is stored in a computer. 
A set of data for a PET scan consists of millions of these lines which can be processed by 
computer to give an image of the organ or tissue where the tracer accumulated. A PET 
scan image is shown in Figure 24.28.

▲ Figure 24.28 PET scan of patient with a brain tumour (bright white area in the centre of 
the scan)

9 During the radioactive decay of a nucleus, a mass of 1.5 × 10–3 u is converted into the 
energy of a γ-ray photon. Calculate this energy, in MeV.

Question
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SUMMARY

» Ultrasound may be generated and detected by 
piezo-electric crystals.

» Ultrasound images are formed as a result of the 
detection and processing of ultrasound pulses that 
have been reflected from tissue boundaries.

» The acoustic impedance Z of a medium is ρc.
» The intensity reflection coefficient at a boundary 

between two media is IR/I0 = (Z2–Z1)
2/(Z2+Z1)

2.
» The attenuation of a parallel beam of ultrasound is 

given by I = I0e–μx.
» Two-dimensional US scans may be obtained using 

a generator/detector consisting of many separate 
crystals all at different angles of orientation.

» X-rays are produced when high-speed electrons 
are stopped by a metal target.

» The minimum wavelength of X-rays produced 
depends on the accelerating p.d.

» An X-ray image is a ‘shadow’ of structures in 
which the X-ray beam is attenuated.

» Contrast in an X-ray image depends on 
neighbouring tissues having very different 
absorption coefficients.

» The attenuation in the intensity of a parallel X-ray 
beam is given by I = I0 e –μx.

» Computed tomography (CT scanning) enables an 
image of a section through the body to be obtained 
by combining many X-ray images, each one taken 
from a different angle.

» A tracer is a compound in which one of its atoms 
has been replaced by a radioactive isotope of the 
same element.

» The location or progress of tracers in living tissues 
can be followed without affecting the tissue 
function.

» The tracers used in PET scanning are positron 
emitters.

» A positron, mass me and charge +q, is the 
antiparticle of an electron.

» Annihilation occurs when a particle and an 
antiparticle interact.

» Annihilation of an electron–positron pair results 
in two γ-ray photons having equal energies and 
moving off in opposite directions.

» A PET scan image is created by processing the 
directions of movement of large numbers of pairs 
of simultaneously detected γ-ray photons resulting 
from electron–positron annihilation.

END OF TOPIC QUESTIONS

1 Explain why, when obtaining an ultrasound scan:
a the ultrasound is pulsed and is not continuous,
b the reflected signal received from deeper in the body is amplified more than 

that received from near the skin.

2 The specific acoustic impedance of fat, muscle and bone are 1.4 × 106 kg m–2 s–1, 
1.6 × 106 kg m–2 s–1 and 6.5 × 106 kg m–2s–1 respectively. The linear absorption 
coefficients in fat and in muscle are 0.24 cm–1 and 0.23 cm–1 respectively.

 A parallel beam of ultrasound of intensity I is incident on the layer of fat. 
Discuss quantitatively, in terms of I, the reflection and the transmission of the 
beam of ultrasound as it passes through the layer of fat of thickness 4.0 mm, 
into the muscle of thickness 43.5 mm and finally into the bone.

3 a By reference to ultrasound waves, state what is meant by acoustic impedance.
b An ultrasound wave is incident on the boundary between two media. 

The acoustic impedances of the two media are Z1 and Z2, as illustrated in 
Fig. 24.29.

incident

boundary

Z1 Z2

wave

▲ Figure 24.29

 Explain the importance of the difference between Z1 and Z2 for the 
transmission of ultrasound across the boundary.
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4 During PET scanning, annihilation of a positron and an electron occurs. 

Suggest why the annihilation:
a occurs close to the point where the positron is created,
b results in two gamma-ray photons of equal energy moving in opposite directions.

5 a Outline briefly the principles of CT scanning. [5]
b In a model for CT scanning, a section is divided into four voxels. The pixel  

numbers P, Q, R and S of the voxels are shown in Fig. 24.30.
 The section is viewed from the four directions D1, D2, D3 and D4.
 The detector readings for each direction are noted.
 The detector readings are summed as shown below.

49 61

73 55

 The background reading is 34.
 Determine the pixel numbers P, Q, R, and S as shown below.

P Q

S R
 

[4]

Cambridge International AS and A Level Physics (9702) Paper 43 Q12 May/June 2014

6 a State what is meant by a radioactive tracer.
b Explain why the annihilation of a positron in matter gives rise to two 

gamma-ray photons moving in opposite directions.
c Calculate the energy of one of the photons emitted as a result of positron 

annihilation.

D3

D4

D2

D1
P Q

S R

▲ Figure 24.30

End of topic questions
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	 25	 Astronomy	and	cosmology

Starting points
★	 When	a	source	of	waves	moves	relative	to	a	stationary	observer	there	is	a	

change	in	the	observed	frequency	(Doppler	effect).
★	 When	a	spectrum	of	continuous	light	passes	through	a	cool	gas	the	

continuous	spectrum	is	crossed	by	a	series	of	darker	lines	(absorption	
spectra).

25.1 Standard candles
When we look at the stars at night, it is obvious that some of the stars are brighter than 
others. This may be because the star is giving out more light or because it is closer to us 
than other stars.

This effect can be illustrated in the laboratory using two lamps, one emitting 3 W of 
light and the other, 5 W of light. When they are the same distance from the observer, the 
5 W lamp is the brighter (or more luminous) of the two. However, if the 3 W lamp is just 
1 metre away from the observer and the 5 W lamp is 10 m away, the 3 W lamp would 
appear to be the brighter of the two. This is because the light spreads out as it moves 
away from the source.

Luminosity

The luminosity of an object is the total power (the total energy emitted per unit 
time) of the object.

▲	 Figure 25.1	The	night	sky

Learning outcomes
By	the	end	of	this	topic,	you	will	be	able	to:

25.1 Standard candles
1	 	understand	the	term	luminosity	as	the	total	

power	of	radiation	emitted	by	a	star
2	 	recall	and	use	the	inverse	square	law	for	

radiant	flux	intensity	F in	terms	of	the	
luminosity	L	of	the	source	F = L/(4πd2)

3	 	understand	that	an	object	of	known	
luminosity	is	called	a	standard	candle

4	 	understand	the	use	of	standard	candles	to	
determine	distances	to	galaxies

25.2 Stellar radii
1  recall	and	use	Wien’s	displacement	law	

λmax	∝	1/T	to	estimate	the	peak	surface	
temperature	of	a	star

2 use	the	Stefan–Boltzmann	law	L	=	4πσr2T 4

3  use	Wien’s	displacement	law	and	the		
Stefan–Boltzmann	law	to	estimate	the	radius	
of	a	star

25.3 Hubble’s law and the Big Bang theory
1  understand	that	the	lines	from	the	emission	

spectra	from	distant	objects	show	an	
increase	in	wavelength	from	their	known	
values

2  use	Δλ/λ	≈	Δ f/f	≈	v/c	for	the	redshift	of	
electromagnetic	radiation	from	a	source	
moving	relative	to	an	observer

3  explain	why	redshift	leads	to	the	idea	that	the	
Universe	is	expanding

4  recall	and	use	Hubble’s	law	v	≈	H0d	and	
explain	how	this	leads	to	the	Big	Bang	theory	
(candidates	will	only	be	required	to	use	
SI	units)
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The object may be a star, a lamp, etc. This energy is emitted as electromagnetic radiation.

The unit of luminosity is the unit of power (W) which is also equivalent to the total 
energy emitted per second (J s−1). The symbol for luminosity is L.

For example, the luminosity L of the Sun is 3.9 × 1026 W.

Radiant	flux	intensity	(apparent	brightness)
The energy emitted by a star moves out in all directions. This light illuminates an ever-
increasing area as it moves out from the star (see Figure 25.2). If no energy is absorbed 
and the energy is emitted uniformly in all directions, then at distance d from the star, 
the energy will be spread over the surface area of a sphere. This area is given by the 
expression 4πd2 and since the total energy per second is the luminosity L, then the 
energy passing per second through unit area is given by L/(4πd2).

d1

d2

A1

A2

area A1
area A2

 = 
d1

2

2d2

▲	 Figure 25.2	The	inverse	square	law

The quantity L/(4πd2) is known as the radiant flux intensity F (or apparent brightness) 
and is given by the expression

F = L/(4πd2)

The unit of F is W m−2.

Radiant flux intensity is the radiant power per unit area passing normally through 
unit area.

WORKED EXAMPLE 25A

The luminosity of the Sun is 3.9 × 1026 W. The Earth orbits the Sun at a mean 
distance of 1.5 × 108 km. Calculate the radiant flux intensity of the Sun, near to 
the Earth.

Answer

F = L/(4πd2)

   = (3.9 × 1026)/(4π × {1.5 × 1011}2) [N.B. convert km to m]

   = 1400 W m−2

1 The radiant flux intensity at Earth due to the Sun’s radiation is 1400 W m−2. The mean 
orbital radii about the Sun of Earth and of Mars are 1.5 × 108 km and 2.3 × 108 km 
respectively.

 Determine the radiant flux intensity of the Sun at Mars.

Question
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Standard	candles
An important aspect of the work of astronomers is to determine the distance of stars 
and galaxies from Earth. A galaxy is a group of hundreds of millions of stars, stellar 
remnants, gas and dark matter, held together by gravity. Galaxies are so far from 
Earth that, to the naked eye, they appear either as a small speck of light or cannot be 
seen at all.

A standard candle is a class of stellar object which has a known luminosity and 
whose distance can be determined by calculation using its radiant flux intensity 
(apparent brightness) and luminosity.

To measure distance, the radiant flux intensity F on Earth (observed brightness) 
is measured. If the actual luminosity L of the star or galaxy can be found, then the 
distance can be calculated using the expression F = L/(4πd2). The difficulty is in the 
determination of the luminosity. One way in which this problem is overcome is the use 
of stars known as Cepheid variables.

A Cepheid variable star is a star whose radius varies periodically. The varying radius of 
the star causes the temperature of the star to change and consequently, the luminosity 
varies periodically. The period of this variation of luminosity (and also the star’s 
brightness observed from Earth) ranges from 1 day to 100 days. Cepheid variable stars 
were first identified by Henrietta Swan Leavitt in 1908. Leavitt also discovered that 
more luminous Cepheids had longer periods, and other astronomers extended her work 
to show that there is a relationship between the period of the star’s variation and its 
luminosity (see Figure 25.3).

Since all Cepheids of a given period have the same luminosity, a Cepheid’s luminosity 
L can be estimated from the period of the variation of brightness. Hence the distance to 
the star is found after measuring F.

1

lu
m

in
os

ity
/(

L S
un

)

period (days)

10

102

103

104

10 100

Type I cepheids

▲	 Figure 25.3	Relationship	between	luminosity	and	period	for	Cepheid	variable	stars.		
The	luminosity	is	plotted	as	a	multiple	of	the	Sun’s	luminosity,	LSun.	Note	both	axes	have		
a	logarithmic	scale.

Using this technique, distances to Cepheid variables of up to 13 million light-years 
can be determined with Earth-bound telescopes. With space-bound telescopes, 
distances to Cepheid variables even further away can be determined. A Cepheid 
variable in a galaxy in the Virgo cluster was found to be 56 million light-years distant. 
Note that a light-year (ly) is the distance that a photon of light travels through space in 
one year i.e. 9.46 × 1015 m:

1.0 ly = 3.0 × 108 × 365 × 24 × 60 × 60

         = 9.46 × 1015 m
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WORKED EXAMPLE 25B

The luminosity L of a Cepheid variable is estimated from its period to be  
4.6 × 1015  W. Its radiant flux intensity (observed brightness) F measured on Earth  
is 1.3 × 10−23 W m−2.

Determine the distance of the Cepheid variable from Earth.

Answer

F = L
(4πd2)

1.3 × 10−23 = (4.6 × 1015)
(4π × d2)

d2 = 2.8 × 1037

d = 5.3 × 1018 m (560 ly)

2 A Cepheid variable has a period of 10 days. Its radiant flux intensity (apparent 
brightness) as measured in Earth orbit is 1.4 × 10−10 Wm−2.

 Use data from Fig. 25.3 to estimate, for the Cepheid variable:

a its luminosity

b its distance from Earth.

Other	standard	candles
Cepheid variables method does not work for galaxies that are a very long distance from 
Earth. Early observations were limited to Cepheid variables and to galaxies relatively 
close to our own galaxy. Other standard candles, such as some supernovae may be used 
for more distant galaxies.

25.2 Stellar radii
When a steel rod is heated very strongly, at first it glows dull red. As heating 
continues, the brightness of the glow increases and the colour changes from dull red 
to orange. The rod is radiating energy to its surroundings as electromagnetic radiation. 
The brightness of the glow depends on the rate at which radiation is emitted (the 
intensity) and the colour seen depends on the relative intensities of the wavelengths of 
the emitted radiation.

Experiments show that at any particular temperature an object emits radiation with a 
continuous range of wavelengths, and that the intensity and the spread of wavelengths 
emitted depend on the temperature of the object.

The theoretical idea of a ‘black body’ was developed to explain the intensity of radiation 
of different wavelengths. The radiation emitted from an ideal black body is known as 
‘black-body radiation’. Stars behave approximately as black bodies. Studying the nature 
of black-body radiation in the laboratory improves our understanding of the nature of 
radiation from stars.

The variation with wavelength of the intensity of the electromagnetic radiation emitted from 
the surface of a black body (e.g. a star) at different temperatures is illustrated in Figure 25.4 
(overleaf).

Question
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▲	 Figure 25.4	Variation	of	intensity	of	radiation	with	wavelength	for	a	black	body	at	
temperatures	of	3000	K,	6000	K	and	12000	K

It can be seen that:

» at all temperatures, radiation is emitted over a continuous range of wavelengths
» the peak of the graph moves towards shorter wavelengths as the temperature increases
» the higher the temperature, the greater the power radiated.

The wavelength corresponding to the maximum intensity of emission at any 
temperature is given the symbol λmax. Clearly, λmax depends on temperature.

Wien’s	displacement	law
Wilhelm Wien (1864–1928) discovered a simple relationship between λmax and the 
thermodynamic temperature T which is known as Wien’s displacement law. Namely

λmax ∝ 1/T

or

λmax = b/T

where b is known as Wien’s displacement constant and is equal to 2.898 × 10−3 m K.

Thus, by measuring the wavelength of the peak intensity of radiation emitted from a 
star, its surface temperature may be determined.

WORKED EXAMPLE 25C

The wavelength of the peak intensity of radiation emitted by the Sun is 510 nm. Use 
Wien’s displacement law to calculate a value for the surface temperature of the Sun.

Answer

λmax = (2.898 × 10−3 )/T

510 × 10−9 = (2.898 × 10−3 )/T

T = 5700 K

3 Rigel and Betelgeuse are two stars in the constellation of Orion. The wavelengths 
for the peak intensities of emission of radiation from Rigel and from Betelgeuse are 
240nm and 878nm respectively.

 Calculate the surface temperature of each of the stars.

 (Wien’s displacement constant = 2.898 × 10−3 m K.)

Question
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Stefan–Boltzmann	law
The luminosity L of a star is the total energy emitted per second. On Figure 25.4, the 
luminosity increases as the area under the curve increases. As a result, it can be seen 
that the luminosity increases as the temperature rises. The observation that L ∝ T 4 was 
formulated by Josef Stefan (1835–93) and is known as the Stefan–Boltzmann law.

For a spherical object of radius r emitting black-body radiation at thermodynamic 
temperature T, its luminosity L is given by the expression L = 4πσ r

2 T 4.

where σ is the Stefan–Boltzmann constant, equal to 5.67 × 10−8 W m−2 K−4.

Finding	stellar	radii
In Topic 25.1, we saw how, using standard candles, it is possible to determine the 
luminosity L of stars. Furthermore, the variation with wavelength of the intensity of the 
radiation emitted by a star can be measured and hence the wavelength λmax giving rise 
to the maximum intensity can be found. Substituting λmax into the expression for Wien’s 
displacement law enables the surface temperature T of the star to be determined.

So, knowing the luminosity L of a star and its surface temperature T then substituting 
these values into the expression for the Stefan–Boltzmann law, a value for the radius of 
the star can be found. It should be remembered that the value is only an estimate, since 
an accurate value for the luminosity of the star cannot be obtained – only an estimate.

WORKED EXAMPLE 25D

Measurements taken of the star Sirius give its luminosity L as 1.6 × 1028  W with its 
intensity maximum at 290 nm. Determine a value for the radius of Sirius.

(Wien’s displacement constant = 2.898 × 10−3 mK; Stefan–Boltzmann constant  
σ = 5.67 × 10−8 Wm−2K−4.)

Answer
Use the expression L = 4πσ r

2 T 4 where the temperature T can be found using  
Wien’s displacement law.

λmax = b/T

290 × 10−9 = 2.898 × 10−3/T

T = 1.0 × 104 K

L = 4πσ r2T 4

1.6 × 1028 = 4π × 5.67 × 10−8 × r2 × (1.0 × 104)4

r = 1.5 × 109 m

(approximately 2.2 times radius of Sun)

4 The red giant star Aldebaran has a luminosity of 1.95 × 1029 W. The wavelength 
corresponding to its peak intensity of emission of radiation is 725 nm.

 Calculate, to 2 significant figures, the radius of Aldebaran.

 (Wien’s displacement constant = 2.898 × 10−3 mK; Stefan–Boltzmann constant  
σ = 5.67 × 10−8 Wm–2K−4.)

Question
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25.3 Hubble’s law and the Big Bang theory
In Topic 22.4 we saw that when white light passes through a low-pressure gas and 
its spectrum is analysed, the continuous spectrum is crossed by a series of darker 
lines. This is known as an absorption spectrum. The darker lines correspond to the 
wavelengths of the emission line spectrum of the gas.

The spectrum of the light from a star is an absorption spectrum. The hot interior of the 
star emits white light and then this white light passes through the cooler outer layers of 
the star. On Earth, the absorption spectrum produced can be analysed to identify the 
elements in the star’s outer layers.

Galaxies
The Milky Way is a faint continuous band of light crossing the sky that can be seen on 
clear moonless nights. In 1750, Thomas Wright suggested that this band is, in fact, a 
very large collection of stars shaped like a convex lens. Such a collection of stars, held 
together by gravitational forces, is referred to as a galaxy.

The Milky Way galaxy, in which our Sun is just one star, contains approximately 1011 
stars in the shape of a spiral. Such a galaxy is shown in Figure 25.5. The spiral of the 
Milky Way galaxy has a diameter of approximately 9.5 × 1020 m and a thickness of 
1.9 × 1019 m. (Light travels 9.46 × 1015 m in one year.)

It is now known that many of the dots of light seen in the night sky are not stars in the 
Milky Way but are, in fact, very distant galaxies. With the advent of space telescopes, 
many more galaxies have been discovered that are so distant from Earth that they 
are only visible from space. Approximately 77% of galaxies are spiral in shape (see 
Figure 25.5). The majority of the remainder are elliptical. It is known that there are at 
least 1011 galaxies in the Universe with each galaxy containing approximately 1011 stars!

Redshift
It may be thought that the dark lines in the absorption spectrum from a star (or any 
other very hot astronomical object) produced by the light passing through cooler 
gaseous elements would correspond exactly to the lines in the emission spectrum of 
those elements in the laboratory. However, this is not the case. For all stars except the 
Sun, the dark lines all have a small but significant difference from the wavelengths of 
the emission spectrum of those elements in the laboratory, as illustrated in Figure 25.6. 
In the visible spectrum, wavelength increases as the colour changes from blue to red. 
When the spectral lines in the absorption spectrum are seen to have an increase in 
wavelength from their known values measured in a laboratory, the effect is known as 
redshift. If the spectral lines in the absorption spectrum are seen to have a decrease in 
wavelength, the effect is known as blueshift.

a) Near star

wavelengths absorbed by hydrogen atoms

b) Distant star

▲	 Figure 25.6	Simplified	absorption	spectrum	for	hydrogen	for	near	and	distant	stars

Measurement of speed using redshift or blueshift
In Topic 7.2 it was seen that where a sound source moves relative to an observer, 
the observed frequency is different from the source frequency. This is known as the 
Doppler effect. Sound is a wave motion and so is light, the difference being that light 
has a much greater speed and much shorter wavelengths. However, the Doppler effect is 
observed with light waves.

▲	 Figure 25.5	A	spiral	
galaxy
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Consider light of speed c emitted at frequency f0 from a star or galaxy moving at speed 
v away from an observer. Then, in one second, f0 waves will be emitted in a distance of 
(c + v) towards the observer.

The apparent wavelength λ that is observed is given by

λ = (c + v)/f0

and since f0 = c/λ0 where λ0 is the wavelength of the light emitted from a stationary 
source, then

λ = (c + v)/f0 = λ0 × (c + v)/c

λ = λ0 × (1 + v/c)

so, λ = λ0 + λ0 × v/c

and λ − λ0 = λ0 × v/c,

(λ − λ0) /λ0 = v/c

(λ − λ0) is the redshift Δλ (or the blueshift) that is observed and so,

f
f

λ
λ
∆ ∆ v

c
= =

0

Comparison of wavelengths in the spectral lines of a star with the wavelengths 
determined in a laboratory enables the speed and direction of the star relative to Earth 
to be calculated. It should be remembered that only the velocity along the direction of 
sight can be found.

Where Δλ is positive (the wavelength observed is greater than the wavelength measured 
in the laboratory) then redshift is seen to occur and the object is moving away from the 
observer. A negative value of Δλ implies blueshift with the object moving towards the 
observer.

For objects that are a very long distance from Earth (such as quasars, discussed further 
below) their speeds are very large, approaching the speed of light.

For objects moving close to the speed of light the formula has to be corrected and the 
formula above is, therefore, approximate.

WORKED EXAMPLE 25E

One wavelength in the hydrogen spectrum of light from Ursa Majoris is 486.112 nm.

In the laboratory, this spectral line is found to have a wavelength of 486.133 nm.

Determine the velocity of Ursa Majoris relative to Earth.

The speed c of light in free space is 3.0 × 108 m s−1.

Answer
Use the expression Δλ/λ ≈ v/c

where Δλ = (486.133 − 486.112) = 0.021nm

and λ = 486.133 nm

So, 0.021/486.133 = v/(3.0 × 108)

v ≈ 1.3 × 104 m s−1

   ≈ 13 km s−1 towards Earth as the light is blue-shifted
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5 Measurements of the spectrum of the light from the galaxy NGC 4889 indicate a 

wavelength of 401.8 nm for the wavelength of the K-line of singly ionised calcium.  
In the laboratory, the wavelength is measured to be 393.3 nm.

 What is the speed and direction of this galaxy relative to Earth?

 (The speed c of light in free space is 3.0 × 108 m s−1.)

Hubble’s	law
Edwin Hubble (1889–1953) studied the absorption spectra of galaxies and calculated 
that most are red-shifted and, therefore, moving away from Earth. Using standard candle 
methods (see Topic 25.1) he determined the distances from Earth of some nearby galaxies 
for which the radial speeds from Earth had been calculated in the 1920s using the Doppler 
formula. Plotting a graph of radial speed v against distance d gave a straight line of best fit, 
as illustrated in Figure 25.8. This showed that the radial speed is proportional to distance.
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That is

v ≈ H0 × d

His conclusion is known as Hubble’s law and the constant H0, determined from the 
gradient of the graph, is known as the Hubble constant. Hubble’s original data was for 
galaxies in the range 0 to 2 Mpc where 1 Mpc (1 megaparsec) is a distance unit used 
in astronomy that is equal to 3.09 × 1019 km. Recent observational data has extended 
Hubble’s plot to galaxies at much greater distances.

The unit of the Hubble constant H0 is normally expressed as km s−1 per Mpc but in 
SI units H0 has units ms−1 per m, which simplifies to s−1.

There is much debate as to the value of the constant H0 since it depends on the accuracy 
to which distances to galaxies can be measured and, hence, the uncertainty in the 
gradient of the graph of radial speed against distance. It is thought that the value of H0 
lies between 50 km s−1 per Mpc and 100 km s−1 per Mpc with the present accepted value 
being 75 km s−1 per Mpc. This, in SI units, is approximately 2.4 × 10−18 m s−1 per m.

WORKED EXAMPLE 25F

The light from a nearby galaxy is observed to be red-shifted, indicating a radial 
speed from Earth to be 1.2 × 106 m s−1. Assuming a value for the Hubble constant of 
2.4 × 10−18 m s−1 per m, estimate the distance from Earth of the galaxy.

Answer
Using Hubble’s law, v ≈ H0 × d,

1.2 × 106 = 2.4 × 10–18 × d

d ≈ 5.0 × 1023 m

(Note: Light takes approximately 1.7 × 1015 s to travel this distance which is 54 million years.)

Question

▲	 Figure 25.8	Hubble’s	original	data	for	
radial	speed	against	distance

▲	 Figure 25.7	Edwin	
Hubble	using	a	
telescope	at	Mount	
Wilson	Observatory,	
Pasadena,	California
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6 Using redshift, the radial speed away from Earth of galaxy NGC 4889 was found to 

be 6500 km s−1.

 Using Hubble’s law and assuming a value of 2.4 × 10−18 m s−1 per m for the Hubble 
constant, determine the time taken, in years, for light to travel from NGC 4889 to 
Earth.

7 The Hubble constant has been determined from one recent set of measurements 
as 75 km s−1 per Mpc. If 1 Mpc = 3.09 × 1019 km, show that in SI units this is 
2.4 × 10−18 s−1.

Quasars
A mysterious object in the Universe is the quasar. Quasars are very distant objects that 
have very large redshifts and a huge luminosity of up to 1040 W. This great luminosity 
enables the study of objects that are at great distances from Earth.

The	expanding	Universe
Einstein proposed that, on a large enough scale, the Universe is both homogeneous and 
isotropic. This is known as the Cosmological Principle. It means simply the Universe 
would have the same general appearance from anywhere else in the Universe as it 
appears from Earth.

The conclusion from redshift data is that nearly all galaxies are moving away from 
Earth, and that galaxies on the edge of the observable Universe have very large recession 
speeds, some close to the speed of light. Using the Cosmological Principle, Hubble’s 
formula also leads to the important conclusion that every galaxy ‘sees’ every other 
galaxy receding from it, and the greater the separation of different objects (e.g. galaxies), 
the greater their speed of separation.

This means that the Universe is expanding – the space between each galaxy is 
expanding – and that this expansion has been taking place for billions of years.

Age	of	the	Universe
Consider two galaxies that are moving apart with speed v. The galaxies are separated 
by a distance x. If this speed were to be reversed in direction, then the galaxies would 
approach one another and the time T taken before the galaxies collide is given by

T = x/v

Using Hubble’s law,

v = H0x

and combining these two expressions,

T = x/H0x = 1/H0.

Note that the distance of separation x has cancelled out in the final expression for T and 
so T is the same for all galaxies. This leads to the conclusion that T is the time when all 
galaxies were at the same point. That is, the time of the Big Bang.

Assuming that H0 = 2.4 × 10−18 m s−1 per m, then

T ≈ 4.2 × 1017 s ≈ 13 billion years.

As already mentioned, there is doubt as to the actual value of H0 and so the age of the 
Universe is thought to be between 11 billion and 20 billion years.

Questions
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WORKED EXAMPLE 25G

The oldest stars that have been detected have an age of approximately 15 billion years.

Deduce a probable value for the Hubble constant based on this value.

Answer
Assume 15 billion years is the age of the Universe.

Then, 15 × 109 years = 1/H0.

Using SI units

15 × 109 × 365 × 24 × 3600 = 1/H0

H0 = 2.1 × 10−18 m s− 1 per m

8 The distance between the Moon and the Earth is approximately 3.8 × 105 km.

 Calculate a value for the change per year in distance between the Moon and the 
Earth as a result of expansion of the Universe.

 Assume the Hubble constant H0 is 2.4 × 10−18 m s− 1 per m.

Question

SUMMARY

» Luminosity is a measure of the total power of 
radiation emitted by an object.

» Radiant flux intensity (apparent brightness) varies 
inversely with the square of the distance from a 
source that may be considered as a point source, 
F = L/(4πd2).

» Objects of known luminosity are referred to as 
standard candles.

» Standard candles may be used to determine 
distances to galaxies.

» Wien’s displacement law λmax = b/T enables the 
temperature of a black body to be determined

» The Stefan–Boltzmann law relates luminosity to 
temperature L = 4πσ r

2T 4.
» Combining Wien’s displacement law with the 

Stefan–Boltzmann law enables the radii of stars to 
be determined.

» The absorption spectra from distant objects shows 
redshift and, using the Doppler formula Δλ/λ ≈ v/c, 
speeds of recession can be estimated.

» Redshift leads to the concept of an expanding 
Universe.

» Hubble’s law v ≈ H0 × d leads to the Big Bang 
theory of the creation of the Universe.

END OF TOPIC QUESTIONS
Data
 Speed of light in free space c = 3.00 × 108 m s−1

 Stefan–Boltzmann constant σ = 5.67 × 10−8 W m−2 K−4

Formulae
 Stefan–Boltzmann law: L = 4πσ r2T 4

 Doppler redshift: Δλ /λ ≈ Δf/f ≈ v/c

1 a Distinguish between the luminosity L of a star and radiant flux intensity F.
b Explain how luminous intensity and radiant flux intensity may be used to 

determine distances to galaxies.
c A space probe is 1.4 × 109 km from the Sun. Power for the space probe is 

provided by solar panels that collect radiant energy from the Sun. The solar 
panels have a total area of 31 m2 and are directly facing the Sun.

 The luminosity of the Sun is 3.9 × 1026 W.
 Calculate the radiant power incident on the panels.
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2 a Explain how the intensity distribution curve of the radiant energy from a star 

may be used to estimate its peak surface temperature.
b The star Betelgeuse in the constellation of Orion is known as a red giant. 

It has a luminosity L of 3.9 × 1030 W. The wavelength λmax of the peak intensity 
of radiation emitted from Betelgeuse is 970 nm.

 Wien’s displacement constant = 2.9 × 10−3 m K.
 Use:

i Wien’s displacement law to determine the surface temperature of 
Betelgeuse,

ii the Stefan–Boltzmann law to calculate the radius of Betelgeuse.

3 a By reference to the Doppler effect, explain what is meant by redshift.
b One wavelength in the hydrogen spectrum of light from the star Vega is 

observed to be 656.255 nm.
 In the laboratory, the wavelength of this spectral line is measured to 

656.285 nm.
 What is the speed and direction of travel of Vega relative to Earth?

4 a Explain why redshift leads to the idea that the Universe is expanding.
b i State Hubble’s law.

ii The redshift in the light from Cygnus A indicates a speed of recession from 
Earth of 1.7 × 104 km s−1.

 Assuming a value of the Hubble constant H0 of 2.4 × 10−18 m s−1 per m, 
calculate the time taken, in years, for light to travel to Earth from the 
position where Cygnus A emitted the radiation.

5 a Explain what is meant by redshift.
b Light from a distant galaxy is shifted towards the red end of the spectrum.  

The amount of redshift is found to differ in different parts of the galaxy.
i State what can be deduced from the fact that the light is redshifted.
ii Explain why the amount of redshift differs.

6 The Stefan–Boltzmann law may be represented by the expression

 L = σAT 4

 where σ is the Stefan–Boltzmann constant.
a Name the quantities represented by the symbols L, A and T.
b Show that the SI units of the constant σ are W m−2 K−4.

7 The Earth, situated 1.5 × 1011 m from the Sun receives 1370 W m−2 of solar power.

 The Sun has radius 7.0 × 108 m.

 The Stefan–Boltzmann constant is 5.7 × 10−8 W m−2 K−4.

 Determine the surface temperature of the Sun.

End of topic questions
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	 26	 Practical	work
An important part of any Physics course is practical work. Practical work should help 
your understanding of the theoretical aspects of the course, as well as be exciting and 
interesting. The practical skills you gain should improve your understanding of the 
principles of scientific enquiry and scientific theory. The development of good practical 
skills will also assist you in future scientific courses or careers.

Throughout your Cambridge International AS & A Level Physics course, you will 
develop the following experimental skills:
1 manipulation, measurement and observation
2 presentation of data and observations
3 analysis, conclusions and evaluation
4 planning

During the course, you will have opportunities to develop these skills. As you become 
more experienced, you will learn how to use logarithms to test possible relationships 
and be able to analyse uncertainties in greater detail.

Safety
In all your practical work, you must consider appropriate safety precautions. You should 
always follow any general laboratory rules and procedures. For a specific practical 
activity, you should also consider any hazards and special precautions which are 
relevant to that activity. It is your responsibility to be constantly vigilant about potential 
hazards, not only for yourself but also for others in the laboratory.

Further guidance
The Cambridge International AS & A Level Physics Practical Skills Workbook is a write-
in resource designed to be used throughout the course and provides you with extra 
opportunities to test your understanding of the practical skills required by the syllabus.

Expectations of experimental skills
1 Manipulation, measurement and observation
Throughout the course, there are a number of measuring instruments that you need to 
learn to use skilfully in order to take accurate measurements. Topic 1 gives information 
on a number of these instruments. You should be able to take measurements using 
apparatus such as a millimetre scale, protractor, top-pan balance, newton meter, 
analogue and digital electrical meters, measuring cylinder, calipers, micrometer screw 
gauge and thermometer. You should also be able to use a stop-watch to measure 
intervals of time, including the period of an oscillating system by timing an appropriate 
number of consecutive oscillations.

It is important that you are able to follow both written instructions and diagrams for 
setting out basic apparatus, including electrical circuits. The skills you develop will 
enable you to identify the best choice of instrument, as well as the type of measurements 
to take. For example, to minimise the uncertainty in the measurement of a time interval 
for the period of an oscillation, it is good practice to time a number n of oscillations 
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so that the measured time t is at least 10 seconds. You can then use the following to 
determine the period T

n=T t

You should understand that it is helpful to repeat measurements to reduce random 
errors. For example, to determine the diameter of a metallic wire, you may repeat the 
measurements of the diameter along the wire and then find the average diameter.

For any experiment, you will need to consider the number of measurements needed to 
give you reliable data. For example, if you expect a straight-line trend, you should take 
a minimum of six data measurements. If your graph is likely to be a curved trend, you 
should take at least nine sets of measurements.

You will also need to consider the range of measurements that will give you reliable 
data. For example, if you need to measure the resistance of a wire of length 85.0 cm, 
you could take six measurements of the resistance for lengths of 10.0 cm, 20.0 cm, 
35.0 cm, 50.0 cm 65.0 cm and 80.0 cm. These readings use the full length of the wire and 
are spread out. After plotting the graph of resistance against length, the resistance for 
85.0 cm can be found. If the plotted points are scattered somewhat, you may decide to 
take further readings.

2 Presentation of data and observations
During your practical work, you will take many measurements and make many 
observations. Your data should always be presented in a concise form and be easy to 
understand. It is good practice to record your measurements and observations in a 
table. Using your data, you will usually then plot a graph to investigate the relationship 
between two quantities.

Table of results
You will be expected to record numerical data in a table of results. It is recommdended 
that you plan your table before you begin your practical work. When you start the 
experiment, you will then already have a plan for what you are going to do and it will be 
easier to record the data.

Your table should include columns for all the raw data, as well as columns for calculated 
data. If you are taking repeat measurements, there should be a column for each repeat 
and a column for the average mesaurement.

Column headings
Each column heading should include the quantity and an appropriate SI unit.  
The accepted scientific convention is to have the quantity and unit separated by ‘/’  
(see Figure 1.8 in Topic 1). For example, if a diameter d is measured in millimetres,  
the column heading would be written as d/mm. It is sometimes helpful to write the  
unit without the prefix, so diameter d measured in millimetres could be written as 
d/10–3 m. Units should not be included in the main part of the table.

Recording measurements
You should record raw readings of a given quantity to the same degree of precision. 
For example, if you measure a length using a metre rule with a millimetre scale, all 
measurements should be recorded to the nearest millimetre, e.g. 20.0 cm and 23.4 cm 
are recorded to the nearest millimetre.

As a general rule, all raw measurements should be recorded to the same number of 
decimal places. This is because the number of decimal places in data gives information 
about the accuracy with which the measurements were taken. For example, if you 
measure a length using a metre rule with a millimetre scale, then 20 cm would not be an 
acceptable measurement because this implies you measured to the nearest centimetre, 
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i.e. the measurement could be between 19.5 cm and 20.5 cm. Similarly, 23.40 cm would 
not be acceptable either, as this implies you have measured to the nearest 0.1 mm, 
which is not possible with a millimetre scale. A reading of 20.0 cm indicates that the 
measurement is to the nearest millimetre, i.e. the measurement could be between 
19.95 cm and 20.05 cm.

Figure 26.1 shows an ammeter reading. The reading of 1.36 A shows that the current 
was measured to the nearest 0.01 A.

Calculating values
In a table of results, you may need to calculate other quantities. When a value is 
calculated from measured quantities, the ‘appropriate number of significant figures’ 
depends on the measured quantity with the least number of significant figures.  
The calculated value should have the same number of significant figures (or one more) 
than the number of significant figures in the quantity with the least significant figures. 
(See the Maths Note on significant figures in Topic 1, page 3.)

For example, if the current I = 1.36 A and the current squared (I2) needs to be 
calculated,

I2 = 1.362 = 1.8496 A2

The column heading for this would be I2/A2.

Since I is given to 3 significant figures, then I2 should also be given to 3 significant 
figures (or one more), i.e. 1.85 A2 or 1.850 A2 would be appropriate.

Similarly, to calculate resistance R from current I and potential difference V, for the 
values I = 0.24 A and V = 4.52 V,

= = =R V
I

4.52
0.24

18.8333333 Ω

Since I is given to 2 significant figures and V is given to 3 significant figures, R should 
be given to 2 significant figures (or one more), i.e. 19 Ω or 18.8 Ω are acceptable.

Example
In an experiment, a student investigated how the extension of a rubber cord varied 
with the diameter of the cord. The length of each cord was 80.0 cm. A mass of 500 g 
was attached to each cord. The student measured and recorded the diameter d of each 
cord using a caliper and determined the extension e of each cord using a metre rule. 

The student then calculated values of 
d
1

2
 and completed a table of results, as shown in 

Table 26.1.

▲ Figure 26.1 Ammeter 
reading

Note the unit for 
d
1

2
.

The caliper measured d 
to the nearest 0.1 mm.

Values of 
d
1

2  were calculated. 

Since d was recorded to 2 

significant figures, 
d
1

2
 should 

also be calculated to 2 (or 3) 
significant figures. For the 
first row, 1.00 would also be 
acceptable, but not 1.

Since e was measured 
using a metre rule, all 
values are given to the 
nearest millimetre. 1 cm or 
1.00 cm would be incorrect.

d/mm
d
1

2
/mm–2 e/cm

1.0 1.0 4.2

1.2 0.69 2.9

1.4 0.51 2.1

1.6 0.39 1.6

1.8 0.31 1.3

2.0 0.25 1.0

▲ Table 26.1 Table of results for how extension  
e varied with diameter d of a rubber cord
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Graph
A graph enables experimental results to be displayed so that further information may be 
obtained. Similar to a table of results, a graph should always be clear. It is recommended 
that you use a sharp pencil and a transparent 30 cm ruler.

Axes
Both the x-axis and y-axis should be labelled with the quantity and unit following 
accepted scientific convention (see Figure 1.8 in Topic 1). It is easy to do this by copying 
the relevant column heading from your table of results.

It is important that you are able to easily plot the data on your graph and read the data 
on your graph. Simple scales should be used on each axis. Each 2 cm square should 
have a value and each 2 cm square should increase in 1, 2 or 5 units. Examples of simple 
scales include 0.2, 0.4, 0.6, etc. (increasing each time by 0.2) and 50, 100, 150, etc. 
(increasing by 50).

The scale on each axis should allow the plotted points to occupy at least half the graph 
grid in both the x-direction and the y-direction.

Plotting of points
You should plot the points using a sharp pencil. Indicate each point using a cross or an 
encircled dot. The diameter of each point should be less than 1 mm. The data should be 
plotted to better than 1 mm.

Before you draw a trend line, it is a good idea to check that the points do follow a trend. 
Any points that do not obviously follow the trend should be re-checked and re-plotted 
if necessary. This could indicate an incorrect measurement. It is good practice to repeat 
such practical measurements.

Trend line
A trend line effectively averages your results and makes an allowance for random errors. 
A trend line should show an even distribution of points on either side of the line along 
its whole length. The line may not necessarily pass through all the points. Drawing the 
line from the top point to the bottom point may not result in a balanced line.

Again, use a sharp pencil so that the thickness of the line is less than 1 mm. To draw a 
straight line, use a transparent 30 cm ruler so that you can see all the plots and to ensure 
you do not have any bumps in the line.

When you plot your data, if one point does not follow the trend, circle this point and 
label it ‘anomalous’. When you draw the trend line, you should ignore this anomolous 
point.

For curved trends, you will need to draw a smooth curve. It is best to rotate the graph 
paper so that the arc follows naturally with the movement of the pencil. Again, the 
curved line may not pass through every point. After you have drawn your curve, you 
may need to draw a tangent to the curve at a given point.
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Example
The graph in Figure 26.2 shows the data plotted from Table 26.1.

1.5

0.40.2

2.0

3.0

3.5

4.0

4.5

5.0

1.0

0.5

2.5

0.6 0.8 1.0 1.2 1.4

/ mm–2

e/
cm

1
d 2

▲ Figure 26.2 Graph shows how extension e varied with diameter d of a rubber cord

3 Analysis, conclusions and evaluation
It can be useful to interpret a graph in order to determine the conclusion for an 
experiment. Straight-line graphs are helpful for determining relationships. The equation 
of a straight-line, y = mx + c, where m is the gradient and c is the y-intercept, may be 
used to compare physical quantities. (See the Maths Note on straight-line graphs in 
Topic 2, page 38.)

Interpretation of a graph
You should be able to read data from a graph. You should read graph data to better than 
1 mm, in the same way that you plotted the data. It is helpful to read data from clear 
intersections on the graph paper – this may not be the same as data points plotted from 
the table.

Straight-line graphs are useful because quantities plotted on the x-axis and y-axis can be 
related to the equation of a straight line

y = mx + c

where m is the gradient and c is the y-intercept.

For example, consider the relationship between the length L of a metallic wire and the 
current I in an electrical circuit

= +
I

K
E

L r
E

1

where E is the electromotive force (e.m.f.), and K and r are constants.

The axis is labelled 
with the quantity and 
unit from the column 
heading.

It is not necessary to 
start at the origin. In this 
case, the graph starts at 
(0.2, 0.5).

The axis is labelled with the 
quantity and unit from the 
column heading.

The points occupy more than 
half the graph grid in both 
directions – four large squares 
horizontally and more than 
seven large squares vertically.

Each 2 cm corresponds to 
an increase of 0.2  (mm–2).

Each 2 cm corresponds to an 
increase of 0.5 (cm).
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When a graph of 1/I (y-axis) is plotted against L (x-axis), then from the equation for 
this relationship,

= K
E

gradient  

=y r
E

-intercept

If the e.m.f. is measured, the constants may be determined using the gradient and 
y-intercept by

K = E × gradient

r = E × y-intercept

Units
In the example above, if I is measured in A, L is measured in cm and E is measured in V, 
then

the unit of 
I
1 is A–1

the unit of K is V × A–1 cm–1 or V A–1 cm–1 or Ω cm–1

the unit of r is V × A–1 or V A–1 or Ω

Determining the gradient and y-intercept
To determine the gradient from a straight line or tangent to a curve, you should look 
for two data points (x1, y1) and (x2, y2) that are on the trend line. The points should be 
easy to read from the graph grid with either or both the x- and y-values coinciding with 
grid lines. The two chosen points on the line should be separated by more than half the 
length of the line drawn.

The gradient is calculated by the following expression

= ∆
∆

= −
−

y

x

y y

x x
gradient 2 1

2 1

You should include the powers of ten included in labels for each axis.

To determine the y-intercept from a straight line where the x-axis begins at the origin, 
the y-intercept may be read directly from the y-axis. The reading of the data point 
should be better than 1 mm.

To determine the y-intercept c from a straight line where the x-axis does not begin at the 
origin, the coordinates of a point on the trend line and gradient should be substituted 
into the equation of a straight line

y = mx + c

c = y – mx

Example calculations of gradient and y-intercept
For the graph in Figure 26.2, the gradient could be determined as follows.

Choose two points: (0.40, 1.65) and (1.10, 4.65). These two data points are more than half 
the length of the line apart. The line crosses grid lines so it is easy to read the values.

gradient =
4.65 – 1.65

1.10 – 0.40
=

3.00

0.7
= 4.29

Since the x-axis does not start at the origin (it starts at 0.2), the y-intercept should be 
determined by substituting the coordinates of a point on the trend line and the gradient 
into the equation of a straight line, y = mx + c. A simple way to do this is to use one of 
the data points from the gradient calculation.
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For Figure 26.2,

c = y – mx = 1.65 – 4.29 × 0.40 = –0.066

Alternatively,

c = 4.65 – 4.29 × 1.10 = –0.069

You should not worry about the difference between the two values. This is likely to be 
due to differences in rounding.

For the data given in Table 26.1 and the graph in Figure 26.2, the suggested  
relationship is

e PML
d
1

2= + Q

where M is the mass attached to the cord, L is the length of the cord, and P and Q are 
constants.

Comparing this equation to the equation of a straight line,

gradient = PML

y-intercept = Q

Using the data given, it is possible to determine values with appropriate units for the 
constants P and Q.

Q = y-intercept = –0.066 cm (or –0.069 cm)

Q = –6.6 × 10–4 m

Note that the unit (cm) is the same as the y-axis label.

To determine P, the expression for the gradient needs to be rearranged to

=P
ML

gradient
 = 

× =4.29
0.500 0.800

10.7

However, we also need to consider the units. The extension e was measured in 
centimetres and the diameter was measured in millimetres. The gradient needs to be 
changed to a consistent unit.

Using metres for both the diameter and extension gives

gradient =
3.00 10

0.7 10
= 4.29 10

–2

6
–8×

×
×  (m3)

This means that P = 10.7 × 10–8 m2 kg–1.

To determine the unit of a constant, you need to know the commonly used prefixes  
(see Table 1.5 on page 4) and be confident in using derived units (see Topic 1).

Estimating uncertainties
All measurements have an uncertainty. The uncertainty of a measurement gives an 
indication of the range of values within which the measurement is likely to lie.  
The uncertainty depends on the measuring instrument used and how the measurement 
is taken.

To estimate the uncertainty in a measurement, the precision of the instrument is often 
used. For example, in Table 26.1 the diameter d of the cord is measured using a caliper 
which measures to the nearest 0.1 mm. This means that the first measurement of d could 
be recorded as 1.0 ± 0.1 mm. The ‘± 0.1’ is the absolute uncertainty.

Table 1.7 in Topic 1 indicates some examples of the uncertainty in different measuring 
instruments.
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Fractional uncertainty and percentage uncertainty
It is often useful to determine the fractional uncertainty or percentage uncertainty.

=fractional uncertainty
absolute uncertainty

measurement
 

percentage uncertainty
absolute uncertainty

measurement
100= ×

When estimating the absolute uncertainty in a measurement, the method of 
measurement needs to be considered. In order to determine the circumference of a 
cylinder, a string may be wrapped tightly around the cylinder. Then, if there are N turns 
of string and the length of string for these N turns is L, the circumference is L/N. The 
uncertainty in the result depends on the thickness of the string as well the divisions on 
the rule. Clearly, the string should be thin, i.e. use thread.

Determining the uncertainty in repeated readings
There will be many occasions when it is sensible to take repeat readings and average 
the results. In experiments to determine the period of an oscillating system, it is 
common for the timing to be repeated to reduce random errors. Other instances could 
be repeating measurements of the diameter of a wire spirally along the length of wire. 
In this case, the absolute uncertainty in a repeated measurement is half the range of the 
repeated readings. For example, if the diameter of a wire is measured five times along its 
length as 0.93 mm, 0.87 mm, 0.95 mm, 0.91 mm and 0.89 mm, then

mean diameter = 
+ + + + =0.93   0.87   0.95   0.91   0.89

5
0.91 mm

half the range = = =maximum value  –  minimum value 

2

0.95  –  0.87

2
0.04 mm

Thus, the mean diameter of the wire is 0.91 ± 0.04 mm.

Drawing conclusions
Sometimes there is a limited number of results and it is not possible to plot a graph.  
In these cases, it often still possible to determine the value of a constant.

For example, a student investigated the period T of a simple pendulum for a length L of 
the pendulum to determine the acceleration of free fall g. The student then repeated the 
experiment for a different length. The results were

L1 = 80.2 cm and T1 = 1.79 s

L2 = 44.9 cm and T2 = 1.35 s

It is suggested that the relationship between T and L is

=T L
g

4π2
2

The acceleration of free fall can be determined for each of the two sets of data by

= = × =g
L

T

4π 4π 80.2

1.79
990

2

2

2

2 cm s–2 and g
4π 44.9

1.35
970

2

2=
×

= cm s–2

To determine whether this relationship containing a constant is supported by 
experimental data, the percentage difference between the two values of the constant 
should be calculated and compared with a calculated percentage uncertainty.

To calculate percentage difference,

percentage difference = 
difference between two values

one of the values
100 ×
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or

difference between two values

average value
100×

Thus,

percentage difference = 20
990

100 2× = %

or

percentage difference = 20
970

100 2× = %

or

percentage difference = 20
980

100 2× = %

If the percentage uncertainty in this experiment was 5%, the conclusion could be that 
the experimental data supports the relationship because the percentage difference is less 
than the percentage uncertainty.

Identifying limitations and suggesting improvements
As you carry out practical work, you should be continually evaluating the procedures 
and measurements so that your data and conclusions are reliable. You need to think 
about how the accuracy of a particular experiment could be improved.

This means that you need to consider whether you are using appropriate measuring 
instruments. For example, you might use a rule with a millimetre scale to measure 
the internal diameter of a beaker. One possible limitation of this procedure is that 
you are only measuring to the nearest millimetre. Another possible limitation is that 
it is difficult to judge the inside of the beaker by eye. A possible improvement to both 
of these limitations would be to use a caliper measuring to the nearest 0.1 mm or a 
travelling microscope.

You should consider the uncertainty in your measurements. For example, when 
measuring length to the centre of thick string, the uncertainty in the measurement may 
be large and the percentage uncertainty will also be large. To improve the procedure, it 
may be possible to use some thinner string.

A simple method to identify limitations is to consider each quantity that is being 
measured or determined. For each measurement, consider the uncertainty in the 
measurement and how easy or difficult it was to take that particular measurement. 
When you have identified the limitations in the measurement, you should then use your 
practical experience to suggest improvements.

The limitations and improvements will depend on each experiment and will require you 
to consider the practical skills that you have gained throughout the course. The example 
below is an illustration only, to help you understand how you may develop your skills in 
identifying limitations and suggesting improvements to experiments.

Example
Consider an experiment to investigate the height that a ball bounces from a surface, as 
shown in Figure 26.3.
1 The ball is dropped from a height h0 of 40.0 cm. The height of the bounce is h.
2 A metre rule with a millimetre scale is held by hand to measure both h0 and h.
3 The experiment is repeated for the height of 40.0 cm.
4 Steps 1, 2 and 3 are then repeated for a height of 80.0 cm.

It is suggested that h = kh0, where k is a constant.▲ Figure 26.3

h0

h

metre
rule

bench

ball
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There are a number of limitations in this experiment and some possible improvements.

Both the measurement of h0 and h depend on the metre rule. It is difficult to keep 
a metre rule straight by hand, so a possible solution would be to use a clamp stand. 
Also, the metre rule may not be vertical so another improvement could be to place 
a set square between the bench and metre rule. It would be helpful to sketch these 
improvements.

Consider the measurement of h0. One limitation is that it is difficult to judge the exact 
starting position of the ball. A possible improvement could be to have a horizontal bar 
attached to the rule. You would also need to measure the diameter of the ball so that you 
could identify the starting position.

It is difficult to judge the maximum height h of the bounce height. An improvement to 
this would be to set up a video camera level with the approximate bounce height, with the 
metre rule in view, so that the height can be recorded. The recording can then be played 
back in slow-motion and then frame-by-frame as the ball reaches its maximum bounce 
height. Alternatively, if a camera is not available, a set-square moved along the edge of the 
rule so that the set-square is level with the maximum position would be an improvement.

Since the bounce height h is small and the uncertainty is large, the percentage 
uncertainty will be high. The experiment may be improved by reducing the percentage 
uncertainty by increasing the initial height h0, so that the bounce height is greater.

In this experiment, only two readings are taken for each height, which is not sufficient 
to determine a valid value of k. An improvement would be to take many more pairs of 
measurements of h0 and h, and to plot a graph of h on the y-axis and h0 on the x-axis so 
that k is equal to the gradient.

During the experiment, the ball may bounce from the bench to the floor which could 
cause a trip hazard. An improvement would be to use a box so that the ball does not fall 
onto the floor.

4 Planning
Planning is a higher-order skill that you will develop throughout the course. As 
you gain more practical experience, you will learn when and how to use laboratory 
equipment to take measurements and make observations. Practical work also requires 
you to understand how you can present your measurements and observations so that 
you can analyse your experimental data. In order to be able to plan experiments and 
investigations successfully, you will need to practise writing a plan and then carrying 
out your plan. You will then need to review your plan to see what additional details 
could have been included.

There are four key stages to planning an experiment or investigation.

Stage 1 – Defining the problem
Initially, you will need to determine the purpose of your experiment or investigation. 
You may have a possible relationship to test and/or quantities to determine.

You should identify the quantity you will vary – this is called the independent variable. 
You will then need to identify the quantity that will be measured as a result of changing 
the independent variable. This quantity is called the dependent variable. Next, to 
ensure that your experiment is fair, you will need to identify the quantities that need to 
remain constant. 

For example, in the earlier example, a student investigated how the extension e of a 
rubber cord varied with the diameter d of the cord. A mass of 500 g was attached to each 
cord. The length of each cord was 80.0 cm. In this experiment, the independent variable 
was the diameter of the cord – this quantity was varied. The dependent variable was the 
extension – this quantity was measured due the variation in the diameter.
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The quantities that were kept constant, to ensure a fair test, were the mass attached to 
the cord, the length of the cord and the material of the cord.

Stage 2 – Method
Once you understand the experiment, you should describe it in detail so that another 
person could follow the plan and carry out the experiment safely. The plan must include 
a description of the method for varying the independent variable. It must also explain 
how the independent and dependent variables will be measured.

The description of the procedure should be clear and easy to follow. You should 
include suitable measuring instruments with an appropriate precision. To improve the 
description, include a clear, labelled diagram of how the apparatus should be assembled, 
e.g. a circuit diagram to indicate how an oscilloscope is connected. The diagram can 
include measurements that need to taken. For example, in an experiment to measure 
the extension of an object, the diagram may include a label L0 on a rule to indicate the 
original measurement and a label L1 to indicate the final measurement of length. The 
statement that extension = L1 – L0 should also be included.

In the description, you should include the method for how to measure other quantities 
that are needed for the final analysis. For example, an investigation may need to know 
the density of a liquid. In this case, the description should include how the mass of the 
liquid is measured and how the volume of the liquid is measured, as well as how the 
density is determined.

The description should also include details of any preliminary experiments that need to 
be carried out, or perhaps any calibration curves that need to be obtained.

It is often helpful to use technical equipment to measure quantities. For example,  
Topic 21 described how oscilloscopes are often used to measure voltages and times. 
From the measurements of voltage and period on an oscilloscope, you should also be 
able to describe how an oscilloscope can be used to determine current and frequency. 
You may suggest the use of datalogging equipment, such as light gates and motion 
sensors. Again, the plan should include a detailed description of the position of the 
equipment and any measurements that need to be made to determine the required 
quantity. To measure quantities that change very quickly, it may be appropriate to use 
a video camera with the ability to playback in slow motion or frame by frame. In such 
cases, the plan should include the position of the video camera.

Stage 3 – Analysis
In this stage, you should identify how the measurements and observations you are 
planning to take can be analysed. Usually this will be by plotting a graph. Ideally, the 
graph should be a straight-line graph. This can be achieved by rearranging the proposed 
relationship into the equation of straight line, y = mx + c. (See the Maths Note on 
straight-line graphs in Topic 2, page 38.)

In your plan, you should state explicitly the quantities that need to be plotted on the 
x-axis and the y-axis. Your plan should include an explanation of how any constants 
may be calculated using the gradient and/or y-intercept of the proposed graph. This 
could indicate that further measurements may be needed.

For example, a student investigated how the period T of a mass-spring oscillator varied 
with mass m of the oscillator. It is suggested that the relationship between T and M is

=T A
m

k

where k is the spring constant and A is a constant.

The student decided to carry out an experiment to determine the value of constant A. 
The student identified that the mass m was the independent variable and the period 
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T was the dependent variable. The student also identified that, for the experiment to be 
fair, k must be kept constant – the same spring must be used, so that the spring constant 
remains the same. The student planned an experiment to vary m and measure T, and 
described an experiment to determine the spring constant k.

To determine A, the student rearranged the equation by squaring both sides to give

=T A
k

m2
2

Comparing this with the equation of a straight line, y = mx + c, the student plotted a 
graph of T 2 on the y-axis and m on the x-axis.

Comparing the above expression with the equation of a straight line means that

gradient = 
A
k

2

y-intercept = 0

Rearranging the gradient with A as the subject gives

A k gradient= ×

Note, the student could have plotted a graph of T on the y-axis and √m on the x-axis, 
but it is better not to calculate square roots.

When you plan an experiment, you should be able to test relationships of the following 
forms:

» y = mx + c, where m is the gradient and c is the y-intercept
» y = axn, where a and n are constants
» y = aekx, where a and k are constants (an exponential relationship)

Please see the section below on Testing relationships and the use of logarithms.

Stage 4 – Safety considerations
When you plan an experiment, you should consider any specific hazards that could 
become a danger to you or another person in the laboratory. It is good practice to carry 
out a safety risk assessment for all activities. This risk assessment should include an 
explanation of why each safety precaution is needed and how the precaution helps 
to minimise the risk. Examples include the use of goggles to prevent a metallic wire 
damaging a person’s eyes if the wire should snap and switching off a ‘high voltage’ 
power supply when not in use to prevent danger of electrocution.

Testing relationships and the use of logarithms
Ideally, to test a proposed relationship, the plotted graph should produce a straight line. 
However, throughout the course, you will encounter relationships that do not follow the 
format of the straight line equation, y = mx + c. One solution to this is to use logarithms.

Relationships of the form P = aQ n

One type of experiment where using logarithms is useful is when you need to find the 
relationship between two variables, P and Q, and the relationship between P and Q is of 
the form

P = aQn

where a and n are constants.

Taking logarithms to base 10 of both sides of the equation

lg P = lg a + n lg Q or lg P = n lg Q + lg a
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Comparing this with the equation of a straight line, a graph of lg P on the y-axis and lg Q 
on the x-axis will give

gradient = n

y-intercept = lg a

Thus, to determine a,

a = 10y–intercept

Relationships of the form Y = Y0e–bx

Another type of experiment where you might be asked to find the relationship between 
two variables, Y and x, is when the relationship between Y and x is of the form

Y = Y0e–bx

where Y0 and b are constants.

This type of relationship occurs, for example, in Topic 19.3 Discharging a capacitor,  
Topic 23.2 Radioactive decay and Topic 24.2 Production and use of X-rays.

Taking natural logarithms (to base e) of both sides of the equation

ln Y = ln Y0 – bx or ln Y = –bx + ln Y0

Comparing this with the equation of a straight line, a graph of ln Y on the y-axis and x 
on the x-axis will give

gradient = –b

y-intercept = ln Y0

Thus, to determine Y0,

Y0 = ey–intercept

Significant figures in logarithms
Consider a length L measured with a rule with a millimetre scale.

If L = 44.6 cm then lg (L/cm) = 1.649334 …

Note that lg (L/cm) is used, rather than lg L/cm, because the logarithm of a quantity does 
not have a unit. This is how the quantity should be written in a table of results and on a 
graph axis.

It is also possible to determine lg (L/mm).

If L = 446 mm then lg (L/mm) = 2.649334.

In this case, the digit before the decimal place has changed. In both cases, L has been 
recorded to 3 significant figures. For logarithmic quantities, the number of decimal 
places should correspond to the number of significant figures. The number of decimal 
places in a logarithmic quantity should be the same as (or one more than) the number of 
significant figures in the raw data.

In this example, if L = 44.6 cm then lg (L/cm) should be recorded in a table of results as 
1.649 (or 1.6493).

Advanced treatment of uncertainties
Throughout your course, you will have estimated the (absolute) uncertainty in a 
measurement and calculated the fractional uncertainty or percentage uncertainty from 
an absolute uncertainty. To convert a fractional uncertainty or percentage uncertainty to 
an absolute uncertainty, the reverse method is used.
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absolute uncertainty

percentage uncertainty
100

quantity= ×

 = fractional uncertainty × quantity

For example, if a potential difference V measurement is 9.2 V ± 2%, the absolute 
uncertainty is given by

absolute uncertainty 2
100

9.2 0.1844= × =

Thus, V = 9.2 ± 0.2 V.

Combining uncertainties
There are two simple rules for combining uncertainties (see Topic 1):
1 For quantities which are added or subtracted to give a final result, add the absolute 

uncertainties.
2 For quantities which are multiplied together or divided to give a final result, add the 

fractional or percentage uncertainties.

Note that rule 2 applies to quantities that are raised to a power. For example, consider 
the length L of the side of a cube. The volume V = L3 = L × L × L. If L = 25 ± 1 mm, then

percentage uncertainty in L = 1
25

100 = 4%×

percentage uncertainty in L3 = 4% + 4% + 4% = 3 × 4% = 12%

Thus, the volume is 253 = 15 625 mm3 ± 12%, which is written as 16 000 ± 2000 mm3.

In general, if the percentage uncertainty in X is P, then the percentage uncertainty in Xn 
is nP.

To combine the uncertainties where several quantities are raised to a power, for example 
x = Ayazb, where A is a constant, the rule is to multiply the fractional uncertainties by the 
power, so

x
x a

y
y b z

z
∆ = × ∆ + × ∆

Similarly, the percentage uncertainty in x is given by

∆ × = × ∆ × + × ∆ ×x
x a

y
y b z

z100 100 100

Maximum and minimum method to determine uncertainties
It is possible to work out absolute uncertainties by using maximum and minimum 
methods. In the above example, the maximum volume Vmax and the minimum volume 
Vmin are given by

V max = (25 + 1)3 = 17 576

V min = (25 – 1)3 = 13 824

The absolute uncertainty in V could be given by

absolute uncertainty = V max – V = 17 576 – 15 625 = 1951 ≈ 2000

or

absolute uncertainty = V – V min = 15 625 – 13 824 = 1801 ≈ 2000

or

V V
absolute uncertainty

2

17576 13 824

2
1876 2000 

max min( ) ( )
=

−
=

−
= ≈
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This method is often used when completing the uncertainties in calculated quantities in 
a table of results. Uncertainties in final answers are usually given to 1 significant figure. 
In a table of results, more than 1 significant figure is acceptable.

Note that care needs to be taken when working out uncertainties where one quantity is 
divided by another. For example, when calculating a spring constant k from the force F 
and extension x,

=k
F
x

max
max
min

  and  =k
F
xmin

min
max

Uncertainties on a graph
In a table of results, you may have actual uncertainties for one or both quantities that 
are to be plotted (see Table 26.2 opposite). These uncertainties are plotted on a graph as 
error bars for each data point (see Figure 26.4 overleaf). A fine pencil should be used to 
draw these. The extremity of an error bar is shown by a short line at right angles to the 
direction of the error bar.

The straight line of best fit should be drawn, as already described. To estimate the 
uncertainty from a graph, a worst acceptable straight line should also be drawn.  
The worst acceptable line is the steepest or shallowest line that passes through all the 
error bars, allowing for any anomalous points. The worst acceptable line should be 
labelled as such or be drawn as a dashed line. It is good practice to ensure that all the 
dashes pass clearly through the error bars.

After you have drawn the worst acceptable line, the gradient and y-intercept of this line 
may be determined. It is important that you take care to read the correct information 
from your graph.

To estimate the absolute uncertainty in the gradient

absolute uncertainty = gradient of line of best fit – gradient of worst acceptable line

or

absolute uncertainty = 
2

gradient of steepest  gradient of shallowest 
worst acceptable line   worst acceptable line–

To estimate the absolute uncertainty in the y-intercept

absolute uncertainty = y-intercept of line of best fit – y-intercept of worst acceptable line

or

absolute uncertainty = 
2

y-intercept of steepest  y-intercept of shallowest 
worst acceptable line worst acceptable line–

The final answer in any experiment should be expressed as a value, an uncertainty 
estimate and a unit. For example, the volume of the cube described above should be 
written as (16 000 ± 2000) mm3.

Example
In an experiment, the period T of a mass-spring oscillator is determined by measuring 
the time t for 10 oscillations. Measurements of t are repeated twice. The experiment is 
then repeated for different values of mass m.

It is suggested that the period T and mass m are related by the following equation

T = 2πAmq

where A and q are constants.
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The equation can be changed so that a straight-line graph can be plotted by taking 
logarithms to base 10 of both sides

lg T = qlg m + lg 2πA

A graph of lg T against lg m will test this relationship.

The mass is measured on a balance with a percentage uncertainty of 5%.

The table of results for this experiment should include columns for the measurements 
of mass m and time t for 10 oscillations. The table should also include columns for 
calculated values of mean t, T, lg m and lg T. The columns for m and lg (m/g) will also 
have absolute uncertainties.

Determining the absolute uncertainties in m and lg (m/g)
Since the percentage uncertainty in m is 5%, for the first row in the table of results, 
when m = 100 g, the absolute uncertainty is 5% × 100 g = 5 g. This means that the first 
quantity should be written as 100 ± 5. (Remember that units are not included in the 
body of a table; column headings indicate the units.)

For the second row, the absolute uncertainty in m is 5% × 150 = 7.5, i.e. 150 ± 8.  
A similar method is used for subsequent rows. In a table of results, it is acceptable to 
have more than 1 significant figure in the absolute uncertainties, e.g. in the fourth row 
of the data 250 ± 13 (see Table 26.2).

Now that the uncertainties in m are known, the uncertainties in lg (m/g) can be determined.

In the first row, lg (100) = 2. Since the mass is given to 3 significant figures, lg (100) 
should be given to 3 (or 4) decimal places, i.e. 2.000 (or 2.0000).

To calculate the uncertainty in lg (100 ± 5),

lg (105) = 2.021

lg (95) = 1.978

The uncertainty in lg (100 ± 5) is therefore either

2.021 – 2.000 = 0.021
or

2.000 – 1.978 = 0.022
or

1
2
 × (2.021 – 1.978) = 0.0215

As demonstrated, any of these values would be acceptable.

Table 26.2 shows the completed table of results.

m/g t1/s t1/s mean t/s T/s lg (m/g) lg (T/s)

100 ± 5 17.6 18.0 17.8 1.78 2.000 ± 0.021 0.250

150 ± 8 22.0 21.6 21.8 2.18 2.176 ± 0.023 0.338

  200 ± 10 24.9 25.3 25.1 2.51 2.301 ± 0.022 0.400

  250 ± 13 27.4 27.8 27.6 2.76 2.398 ± 0.023 0.441

  300 ± 15 31.0 30.6 30.8 3.08 2.477 ± 0.022 0.489

  350 ± 18 33.3 33.7 33.5 3.35 2.544 ± 0.022 0.525

▲ Table 26.2

Since t is recoded to 3 significant 
figures, lg (T/s) should be recorded 
to 3 (or 4) decimal places.

Column headings for 
logarithmic quantities give 
a quantity and unit within 
brackets as the logarithm 
does not have a unit.

This is the usual notation 
for column headings: a 
quantity and unit.

The actual uncertainties 
in m are calculated by 
taking 5% of the mass 
values.

Since m is recorded to 3 significant 
figures, lg (m/g) should be recorded 
to 3 (or 4) decimal places.
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A graph can then be plotted of lg (T/s) on the y-axis against lg (m/g) on the x-axis, as 
shown in Figure 26.4.

0.30

2.01.9

0.35

0.45

0.50

0.55

0.60

0.25

0.20

0.40

2.1 2.2 2.3 2.4 2.5 2.6
lg (m/g)

lg
 (T

/s
)

▲	 Figure	26.4

Determining	the	gradient,	including	the	uncertainty
The gradient of the best-fit line is determined using the method already discussed.  
(See the Maths Note on straight-line graphs in Topic 2, page 38.)

Two data points are chosen from the line of best fit in Figure 26.4 and substituted into 
the expression to calculate the gradient

= −
−

= =gradient
0.520 0.225

2.54 1.95

0.295

0.59
0.50

The gradient of either the steepest or shallowest worst line from Figure 26.4 is then 
determined using the same principles of determining the gradient

=
−
−

= =steepest gradient
0.535 0.235

2.55 1.99

0.300

0.56
0.536

shallowest gradient
0.520 0.235

2.55 1.95
0.285
0.6

0.475=
−
− = =

The uncertainty in the gradient is either

0.536 – 0.50 = 0.036 or

0.50 – 0.475 = 0.025 or

(0.536 – 0.475)/2 = 0.031

Determining	the	y-intercept,	including	the	uncertainty
Since the x-axis in Figure 26.4 does not start at the origin, the y-intercept should be 
determined by substituting the coordinates of a point on the trend line and the gradient 
into the equation of a straight line, y = mx + c. A simple way to do this is to use one of 
the data points from the gradient calculation.

Scale markings are 
added every 2 cm – a 
simple scale.

Axes are labelled.

The worst acceptable 
line is drawn as a 
dashed line, passing 
through each error bar.

The best-fit line misses 
this point.

The steepest worst 
acceptable line passes 
through the extremity 
of this error bar so that 
it passes through all 
the error bars.

The graph does not have 
to start at the origin.
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For the graph in Figure 26.4,

y-intercept of best-fit line = y – mx = 0.520 – 0.50 × 2.54 = –0.75

y-intercept of steepest line = y – mx = 0.535 – 0.536 × 2.55 = –0.83

y-intercept of shallowest line = y – mx = 0.520 – 0.475 × 2.55 = –0.69

The uncertainty in the y-intercept is either

–0.83 – –0.75 = 0.08 or

–0.75 – –0.69 = 0.06 or

(–0.83 – –0.69)/2 = 0.07

Determining the constants A and q, including the uncertainties
Since lg T = q lg m + lg 2πA,

gradient = q = 0.50 ± 0.05

y-intercept = lg 2πA

10y-intercept = 2πA

Remember ‘lg’ represents the logarithm to base 10.

A 10
2π

10
2π

0.028
y intercept 0.75

= = =
− −

Using the steepest line,

= = =
− −

A 10
2π

10
2π

0.024
y intercept 0.83

Using the shallowest line,

= = =
− −

A
10

2π
10

2π
0.032

y intercept 0.69

Thus,

A = 0.028 ± 0.004

END OF TOPIC QUESTIONS

1	 You	may	not	need	to	use	all	of	the	materials	provided.

 	 In	this	experiment,	you	will	investigate	an	electrical	circuit.
a	 Set	up	the	circuit	shown	in	Fig.	26.5.

	

wooden stripx
wire

VV

RRF G

1.5 V

V1 V2

▲ Figure 26.5

482807_26_CI_AS_Phy_SB_3e_414-435.indd   431 30/06/20   9:46 PM



432

26
 P

r
a

c
ti

c
a

l 
w

o
r

k

26
  F and G are crocodile clips.

• Place G on the wire so that the distance x between the ends of F and G is 
approximately 40 cm.

• Measure and record x.
• Close the switch.
• Record the voltages V1 and V2.
• Open the switch. [2]

b Vary x until you have six sets of readings of x, V1 and V2.
  Record your results in a table. Include values of (V2 – V1) and Vx

1  in your  
table. [10]

c i Plot a graph of (V2 – V1) on the y-axis against Vx
1  on the x-axis. [3]

ii Draw the straight line of best fit. [1]
iii Determine the gradient and y-intercept of this line. [2]

d It is suggested that the quantities V2, V1 and x are related by the equation:

 V V
PV
x–2 1

1( ) = + Q

  where P and Q are constants.
  Using your answers in c iii, determine values for P and Q. Give appropriate 

units. [2]

 [Total: 20 marks]

Cambridge International AS and A Level Physics (9702) Paper 33 Q1 May/June 2018

2 You may not need to use all of the materials provided.

  In this experiment, you will investigate the motion of a hacksaw blade.
a Assemble the apparatus as shown in Fig. 26.6.

 

h0

≈ 26 cm

G-clamp

wooden block

hacksaw blade
bench

floor

▲ Figure 26.6 (not to scale)

  The vertical distance from the floor to the top surface of the hacksaw blade is 
h0, as shown in Fig. 26.6.

  Measure and record h0. [1]
b i Place a 100 g mass on the blade with its centre approximately 19 cm from 

the bench and tape it in position.
  When released, the hacksaw blade will bend down, as shown in Fig. 26.7.

 

h

tape

100 g mass

▲ Figure 26.7 (not to scale)
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 	 The	vertical	distance	from	the	floor	to	the	top	surface	of	the	hacksaw	blade	
at	the	centre	of	the	mass	is	h.

 	 Measure	and	record	h.	 [1]
ii	 Calculate	y,	where	y	=	h0	–	h.	 [1]

c	 Estimate	the	percentage	uncertainty	in	your	value	of	y.	 [1]
d	 Push	the	end	of	the	hacksaw	blade	down	a	small	distance	and	then	release	it.	

The	blade	will	oscillate.
 	 Determine	the	period	T	of	the	oscillations.	 [2]
e	 Move	the	slotted	mass	approximately	3	cm	further	from	the	bench	and	fix	it	

with	tape.
 	 Measure	and	record	h.
 	 Repeat	b ii	and	d.	 [3]
f	 It	is	suggested	that	the	relationship	between	T	and	y	is:

	 T c y=
 	 where	c	is	a	constant.

i	 Using	your	data,	calculate	two	values	of	c.	 [1]
ii	 Explain	whether	your	results	support	the	suggested	relationship.	 [1]

g	 Theory	suggests	that	an	approximate	value	of	the	acceleration	of	free	fall	g	is	
given	by:

	 g
c

4π2

2
=

 	 Using	your	second	value	of	c,	calculate	g.	Give	an	appropriate	unit.	 [1]
h i	 Describe	four	sources	of	uncertainty	or	limitations	of	the	procedure		

for	this	experiment.	 [4]
ii	 Describe	four	improvements	that	could	be	made	to	this	experiment.		

You	may	suggest	the	use	of	other	apparatus	or	different	procedures.	 [4]

 [Total: 20 marks]

Cambridge International AS and A Level Physics (9702) Paper 36 Q2 Oct/Nov 2018

3	 A	student	uses	a	Hall	probe	to	investigate	the	magnetic	flux	density	due	to	a	
U-shaped	electromagnet,	as	shown	in	Fig.	26.8.

	

p

P

iron core

coil

▲	 Figure	26.8
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Point P is equidistant from the poles of the electromagnet and distance p is the 
vertical distance between P and the top of the electromagnet. The magnetic flux 
density is B at point P. It is suggested that the relationship between B and p is:

B = kNIe−αp

where N is the number of turns on the coil, I is the current in the coil and α and k are 
constants.

Design a laboratory experiment using a Hall probe to test the relationship between  
B and p. Explain how your results could be used to determine values for α and k.  
You should draw a diagram to show the arrangement of your equipment. In your 
account, you should pay particular attention to:
• the procedure to be followed,
• the measurements to be taken,
• the control of variables,
• the analysis of the data,
• any safety precautions to be taken.

[Total: 15 marks]

Cambridge International AS and A Level Physics (9702) Paper 52 Q1 Oct/Nov 2016

4 A student is investigating the current in a circuit. The circuit is set up as shown in 
Fig. 26.9.

 

E

A

P Q

r

▲	 Figure	26.9

  Resistors, each of resistance R, are connected in parallel between P and Q.  
The current I is measured. The experiment is repeated for different numbers n  
of resistors between P and Q. It is suggested that I and n are related by the 
equation:

E I R
n r= +








  where E is the electromotive force (e.m.f.) and r is the internal resistance of the 
power supply.
a A graph is plotted of 

I
1 on the y-axis against n

1 on the x-axis.

  Determine expressions for the gradient and the y-intercept. [1]
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b Values of n, I and n
1  are given in Fig. 26.10.

n I/mA n
1

I
1/A–1

2 34 ± 2 0.50

3 46 ± 2 0.33

4 56 ± 2 0.25

5 66 ± 2 0.20

6 76 ± 2 0.17

7 84 ± 2 0.14

▲ Figure 26.10

  Calculate and record values of 
I
1 /A–1 in Fig. 26.10.

  Include the absolute uncertainties in 
I
1. [2]

c i Plot a graph of 
I
1/A–1 against n

1.

  Include error bars for 
I
1. [2]

ii Draw the straight line of best fit and a worst acceptable straight line  
on your graph. Both lines should be clearly labelled. [2]

iii Determine the gradient of the line of best fit. Include the absolute 
uncertainty in your answer. [2]

iv Determine the y-intercept of the line of best fit. Include the absolute 
uncertainty in your answer. [2]

d i Using your answers to a, c iii and c iv, determine the values of E and r. 
Include appropriate units.

  Data: R = 470 ± 5 Ω. [3]
ii Determine the percentage uncertainty in r. [1]

 [Total: 15 marks]

Cambridge International AS and A Level Physics (9702) Paper 52 Q2 Oct/Nov 2018
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List of formulae and data
AS Level
Formulae
uniformly accelerated motion s = ut + 12at2 v2 = u2 + 2as
hydrostatic pressure ∆p = ρg∆h
upthrust F = ρgv
Doppler effect for sound waves fo = fsv/(v ± vs )
electric current I = Anvq
resistors in series R = R1 + R2 + ...
resistors in parallel 1/R = 1/R1 + 1/R2+ ... 
Data
acceleration of free fall g = 9.81 m s−2

speed of light in free space c = 3.00 × 108 m s−1

elementary charge e = 1.60 × 10−19C
unified atomic mass unit 1u = 1.66 × 10−27 kg
rest mass of electron me = 9.11 × 10−31 kg
rest mass of proton mp = 1.67 × 10−27 kg

A Level
Formulae
uniformly accelerated motion s = ut + 12at2 v2 = u2 + 2as
hydrostatic pressure ∆p = ρg∆h
upthrust F = ρgv
Doppler effect for sound waves fo = fsv/(v ± vs )
electric current I = Anvq
resistors in series R = R1 + R2 + ...
resistors in parallel 1/R = 1/R1 + 1/R2+ ...
gravitational potential φ = −GM/r
gravitational potential energy Ep = −GMm/r
pressure of an ideal gas p = 

1
3 Nm<c2>

simple harmonic motion a = −ω 2x
velocity of particle in s.h.m. v = v0 cos ω t v = ±ω√(x0

2 − x2)
electric potential V = Q/4πε0r
electric potential energy Ep = Qq/4πε0r
capacitors in series 1/C = 1/C1 + 1/C2 + ...
capacitors in parallel C = C1 + C2 + ...
discharge of a capacitor x = x0 exp (−t/RC)
Hall voltage VH = BI/ntq
alternating current/voltage x = x0 sin ω t
radioactive decay x = x0 exp (−λt)
decay constant λ = 0.693/t1

2

intensity reflection coefficient 
IR
I0

 = 
(Z1 − Z2)

2

(Z1 + Z2)
2 

Stefan–Boltzmann law L = 4πσ r 2T 4

Doppler redshift ∆λ/λ ≈ ∆f/f ≈ v/c
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f 
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u
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Data
acceleration of free fall g = 9.81 m s−2

speed of light in free space c = 3.00 × 108 m s−1

elementary charge e = 1.60 × 10−19C
unified atomic mass unit 1u = 1.66 × 10−27 kg
rest mass of electron me = 9.11 × 10−31 kg
rest mass of proton mp = 1.67 × 10−27 kg
Avogadro constant NA = 6.02 × 1023 mol−1

molar gas constant R = 8.31 J K−1 mol−1

Boltzmann constant k = 1.38 × 10−23 J K−1

gravitational constant G = 6.67 × 10−11 N m2 kg−2

permittivity of free space ε0 = 8.85 × 10−12 F m−1  (1/4πε0 = 8.99 × 109 m F−1)
Planck constant h = 6.63 × 10−34 J s
Stefan–Boltzmann constant σ = 5.67  ×  10−8 W m−2 K−4
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Answers

AS Level
1 Physical quantities and units
Questions
1 10 800 cm2 or 1.08 × 104 cm2

2 8.5 × 10−8m3

3 1.0 × 109

4 a 6.8 × 10−12 F
 b 3.2 × 10−5 C
 c 6.0 × 1010 W
5 800
6 4.6 × 104

7 a 100−150 g
b 50−120 kg
c 2−3 m
d 0.5−1.0 cm
e 0.05 mm
f 2 × 10−8 m3

g 4 × 10−3 m3

h 10−12 m s−1

i 200−300 m s−1

j 50−100 GJ
k 1−2 kJ

8 kg m−3

9 kg m−1 s−2

10 a yes
 b yes
11 kg s−2

13 kg m−1 s−2

14 12.52 mm
16 a ±0.06 A
 b 2.01 ± 0.09 A
17 a i ± 2 mm
 b 6%
18 a  end of rule damaged; measure length from  

10 cm mark
 b  parallax error; place pencil in contact with scale, 

over the graduations and define the ends with 
set-squares

19 a micrometer screw gauge
 b  zero error on drum
 c  averaging reduces random errors; spiral readings 

allow for a non-circular cross-section, and 
moving along the length of the wire allows for 
any taper

20 a 1.2
 b ±0.1 cm
21 (870 ± 40) cm3

22 (8.9 ± 0.6) × 103 kg m−3

24 a scalar
b vector
c scalar

25 a vector
b scalar
c vector

26 Velocity has direction, speed does not. Velocity is 
defined in terms of displacement which is a vector, 
speed is defined in terms of distance which is a 
scalar.

27 Student is correct. Weight is a force which acts 
vertically downwards.

28 Direction of arrow gives direction of vector. Length 
of arrow drawn to scale represents magnitude of 
vector quantity.

29 a 690 N
b 210 N
c 510 N at an angle of 28° to the 450 N force

30 upstream at 78° to the bank
31 120 N at an angle of 25° to the 50 N force in an 

anticlockwise direction
32 a 7 km h−1

b 1 km h−1

33 11 N at an angle to the 6.0 N force of 56° in an 
anticlockwise direction

34 a 250 km h−1

b 180 km h−1

35 a 1.0 m s−1

b 9.1 m s−1

END OF TOPIC QUESTIONS
1 A
2 B
3 B
4 C
5 C
6 C
8 kg m2

9 a i kg m2 s−2

 ii kg m2 s−2

11 (9.7 ± 0.9) × 103 kg m−3)
12 b i 92 N

 ii 77 N
 c i 59 N

 ii 59 N
13 a i 18 m s−1

  ii 29° above horizontal
 b i 10 m s−1

  ii 33°
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s
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14 a  380 pm
b 0.086 Ms
c 8.3 min

 e ii 230 m s−1

15 a i m3

b kg m−1 s−1

16 a i (50−150) × 10−3 kg
  ii 50−300 cm3

b (7.9 ± 0.5) × 103 kg m−3

17 b m2

18 b i 0.20 W
  ii 7%
  iii 0.20 ± 0.01 W

2 Kinematics
Questions
1 5.3 × 10−11 m
2 3200 s
3 6 m s−1

4 6 m s−2

5 3.3 s
6 30 km
7 180  m s−1

9 3.6 h; 610 km h−1

10 −5.0 m s−2

12 9.8 m s−2

13 2.5 m s−2

14 7.5 s; 15 m s−1

15 8.2 m s− 1 upwards
16 a 1.8 m s−2

b 770 m
17 6.1 m s−1

18 20 m
19 75 m
20 140 m s−1

21 47 m s−1

22 a B
b A

23 3.5°

END OF TOPIC QUESTIONS
2 8
3 a 61°; 2.8 m

b 3.9 m s−1

c 1.4 s
4 a 9.4 m s−1

b 10%
6 B
7 C
8 C
9 b 0.31−0.35 m s−2

c 84 m
d 26 s

10 b ii 9.8 m s−2

  iii 1 9.9 m
   2 2.0 m

11 b i 10.6
  ii 30 m s−1

  iv 10 800 N
12 b i 0.39 s
  ii 0.75 m
13 a i 7.7 m s−1

  ii 9.2 m s−1

c 8.4 m
14 b ii 0.61 s
  iii 2.8 m

3 Dynamics
Questions
1 1.7 m s−2

2 5.3 N
3 a 61 N

b 94 N
4 6.8 × 10−24  N s (kg m s−1)
6 1.2 m s−1

7 600 N
8 a 1

2 uA
b 0.5

END OF TOPIC QUESTIONS
1 50 kg
2 a 7.7 m s−1

b 45.3 m s−2

c 2040 N
4 T/2
5 3.3 × 104 N s (kg m s−1)
6 3.6 × 107 N
7 0.27 N
9 1.03 × 105 m s−1

10 Heavy particle’s speed is practically unchanged; 
light particle moves with a speed 2u in the same 
direction as the incident heavy particle.

11 the lighter object
12 C
13 D
14 B
15 a 0.54 kg m s−1

b 0.54 N s
c 36 N

16 a i 2.16 kg m s−1

  ii 1.07 m s−1

  iii 1.16 J
b 0.059 m

17 3080 m s−1

19 a 3 u to the left
 b i 3 u to the right
  ii 3t1

c 3 u/2
20 a 3 m

b 0.25
21 a 75 g
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2 510 J
b ii   7.6 m s−2

23 b i 3.9 kg m s−1

 ii   0.97 N
 c i −3.4 and +3.4 kg m s−1

24 a 0.11 m s−1

 b i 1 47 m s−1

2 0 m s−1

25 b 3.2 m s−1

c 97 J

4 Forces, density and pressure
Questions
1 5.6 N m
2 4.5 N
3 14 (13.5) N
4 b 29 N
5 11 000 kg m−3

6 0.18 kg
7 1.4 × 104 Pa
9 3.0 N

END OF TOPIC QUESTIONS
1 B
2 D
3 B
4 a 4.2 N m

b 9.1 N
5 a 2.9 N m

b 8.0 N
6 a 88 N

b 112 N
7 67 N
8 b iii 1.3 N

c 7800 kg m−3

9 a 1.4 N m
b 1.2 N m

10 a 8800 kg m−3

 b i 5.1 N
  ii 44 N

c 4.1kPa
11 1.5 × 105 Pa
13 b i 23 N
  iv 1.9 kg
14 b i 12 N m
 c i 0.90 N
  ii 1.5 N
15 b i 2500 kg m−3

  ii 2.2 × 104 Pa
16 b i 26 N

ii 15 N
17 a ii 190 N
18 0.49 N

19 b i 7.9 × 103 kg m−3

  iv 8.6 m s−2

  v 7.3 m s−1

5 Work, energy and power
Questions
1 a 180 J

b 30 J
2 a 15.5 J

b 7.6 J
3 a kinetic energy at its lowest point → potential 

energy at its highest point → kinetic energy 
at its lowest point, etc. (kinetic and potential 
energy at points in between)

b potential energy of compressed gas → kinetic 
energy of spray droplets → heat when droplets 
have stopped moving(energy transferred to 
surrounding atmosphere)

c kinetic energy when thrown → potential and 
kinetic energy at highest point of motion → 
internal and heat and sound energy when clay 
hits the ground

4 All the electrical energy is changed to internal 
energy of the heater and the heater gets hot.  
The heater releases all this energy to the 
surroundings so the process is 100% efficient.

5 58%
6 4.3 × 105 J
7 1.2 × 105 N
8 1.5 kW
9 a 1.3 × 104 J gain

b 12 J gain
c 2.4 × 109 J loss

10 3.1 × 105 J
11 a 1000 J

b 3000 J

END OF TOPIC QUESTIONS
1 90 J; 0; 78 J; 0.15 m; 36°; 2.6 × 103 N
2 a 7.9 N

b 0.19 J
3 a chemical

b gravitational potential
c kinetic of the wind
d kinetic of gases, sound, light, gravitational 

potential energy
e internal potential

4 a 0.51 m
b 80 J s−1

5 a 11 J
b 14  m s−1

6 a 16 MJ
b 110 MJ
c 210 MJ
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7 15%
9 C
10 A
11 C
12 a i 16.5 kW
  ii 3200 N
  iii 96 kW
 b i 1.32 MJ
  ii 3.84 MJ
13 b i 1 8.3 J
   2 13 m
  ii 3
14 b 1090 N
 c ii 76 m
  iii 1 2.7 × 105 J
   2 3.5 × 105 J
15 a ii 17.6 m
 b i 140 N up
  ii 17.6 m
16 b 2.9 m
 c i 1.6 J
  ii 0.60 J

e 0.55 N s
f 5.9 N

17 b i 9.0 × 104 W
  ii 1 1.6 × 107 J
   2 7.0 × 106 J
   3 9.0 × 106 J
  iii 1.1 × 103 N

6 Deformation of solids
Questions
2 400 N m−1

3 a 3.0 × 104 N m−1

b 54 N
4 a 1.29 × 107 Pa

b 1.17 × 10−4

c 0.16 mm
5 5.3 × 106 Pa
7 5.4 × 10−2 J
8 4.2 × 10−2 m

END OF TOPIC QUESTIONS
1 C
2 D
3 B
4 a 500 N m−1

b 13.1 cm
5 7.9 J
6 0.36 mm
8 c ii 1 0.057 J

3 0.020 J
9 b i 4.6 × 10−3 m
  ii 4×
10 b ii 78 N m−1

  iii 0.26 J

 c i 0.12 m
  ii 53 N m−1

11 b ii 1.3 × 1011  N m−2

  iii 1.2 × 10−3 J
12 b i 4.5 × 107 N m−1

  ii 90 J

7 Waves
Questions
1 60° allow π/3 radians
2 0.40 m s−1

3 0.68 m
4 1.4
5 a 1.2 × 10−3 s

b 830 Hz
6 amplitude = 0.99 cm, time period no change
7 270 Hz
8 460 THz
9 6.3
10 0.038 m
11 The graph of intensity with θ shows a cos2 graph 

with a maximum intensity when θ = 0, 180° and 
360° and zero intensity when θ = 90° and 270°.

12 60°

END OF TOPIC QUESTIONS
1 B
2 C
3 C
4 a 200 Hz

b 5.0 × 10−3 s
5 a 7.5 × 1014 Hz to 4.3 × 1014 Hz

b 1.2 m
6 ¼(0.25)
7 a 5.7 × 10−8 J

b 4.9 × 10−5 W m−2

8 2.0 × 109 W m−2

9 b i 0.6 s
  ii 4.0 cm
  iii 6.7 cm s−1

 c ii 3.0
10 b ii 6.0 × 1014 Hz
11 a i 1 Nλ

2 N/f
 b 1300 Hz
 c ii 180°
  iii 9.1 m
12 a 250 Hz

b amplitude 2.8 cm
13 b i 1 1.5 mm

2 4.2 × 10−2 m
  ii 0.56 s
14 a i 5.5 mV
  ii 530 Hz
  iii 14 Hz

b 530 ± 10 Hz
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  ii P and S or Q and T
c 0.18 m s−1

d 0.44
16 a 71°

b intensity is reduced by 1/9 of its original value
c 55°

8 Superposition
Questions
1 6.25 × 10−7 m (625 nm)
2 63 m
3 880 Hz; 1320 Hz
4 0.38 m
5 340 Hz
6 128 Hz
7 56°
8 22 cm
9 652 nm
10 28.2°; 70.7°
11 2 (3 if zero order included)

END OF TOPIC QUESTIONS
1 A
2 D
3 B
4 C
6 c 3.5 mm
9 b 8.5 cm
10 a 108 m s−1

b 45 Hz
11 a 2.5 × 10−6 m

b 10.2°
c 5; 3

13 0.73° (1.26 × 10−2 rad)
14 b 180° (π rad)

c 5:1
d 224 m s−1

15 26.6 cm
17 b 212 mm

c 449 mm
18 c 180 Hz
19 b i 8.0 × 105

  ii 2.5 × 106 m
20 a i 0.8 m
 b ii 1.2 m
21 b 1.1 cm
 c i 3.4 × 10−4 m
22 b ii 1 360° or 0°

2 920 nm
  iii 3 × 10−4 m
23 b i 1800 Hz
  ii 1.0 × 10−4 s cm−1

 c i 0.090 m
  iii 14 s

9 Electricity
Questions
1 2.0 A
2 4.8 × 105 s
3 a 60 C

b 3.8 × 1020

4 3.9 × 1028 m−3

5 1.6 × 10−13 J
6 a 0.25 C

b 2.2 J
7 100 Ω
8 current in both is 0.42 A
9 a 9.2 A
 b 26  Ω
10 18 m
11 0.97 mm

END OF TOPIC QUESTIONS
1 A
2 D
3 C
4 a 760 C

b 1000 W
c 57 Ω

5 a i 0.20 A
  ii 0.60 W

b 5400 J
6 3.5 × 106 J
7 2.0 kW
8 6.7 m
9 b I/A    0.20  0.40  0.60  0.80  1.00  1.20  1.40
  R/Ω   0.95  1.20  2.45  3.65  4.56   5.47   6.21
10 a 0.62 Ω

b 4.3 × 10−7 Ω m
11 a i 19 Ω
  ii 3.5 m
 b i 630 W
  ii ¼ length or 4 times greater area
12 b i 3200 W
  ii 13 A
  iii 3.5 × 107 C
  iv 8.4 × 1019

13 b iii 2.4 × 10−2 Ω
14 b i 1 2.8 A
   2 8.0 A
  ii 1 4.3 Ω
   2 1.5 Ω
  iii 0.35

10 D.C. circuits
Questions
1 a EI

b I2R or EI
2 0.56 Ω
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3 a 3.0 A, when the cell is short circuited
b 1.1 W, when load resistance equals the internal 

resistance
4 0.25 A
5 2.0 A towards the junction
6 2.0 V
7 4.3 Ω
8 25 Ω
9 connections are across variable resistor
 R = 750 Ω
10 a 12 V

b 0.57 V
c 5.0 kΩ

11 a 0.82 V
b 7.7 V

END OF TOPIC QUESTIONS
1 C
2 C
3 D
4 a 0.05 Ω

b 0.3 Ω
5 a 0.25 A

b 1.6 Ω
c 12 J

7 a 169 Ω
b 13 Ω

8 a 5 Ω
b 3.0 A

9 a 25 Ω
10 a 4.5 V
 b i 50 Ω
  ii 0.09 A
  iii 0.90 V
12 10 resistors each of resistance 12 kΩ, power rating 

0.5 W connected in parallel
13 a 4 Ω

b 8 Ω
c 3  Ω
d 1.0 A

14 a i 1.6 × 10−2 Ω
  ii 1.1 × 10−3 Ω
  iii 27 W
 b i 4.4 s
  ii 4.4 × 1021

 c i 11.7 V
  ii 307 W
15 a 1.02 V; 1.22 W
 b ii 7.53 m
  iii 1.41 W
16 b i 0.29 A
  ii 1.03 V
  iii 1.03 V
17 c i 5.7 V
  ii 1.7 Ω

 d i 4.64 W
  ii 51 %
18 b i 1 1.5 A

2 2.5 Ω
  ii 0.25
19 b i 1 0.15 A

2 0.90 W
3 2.3 × 1019

4 8.0 Ω
5 12 Ω

11 Particle physics
Questions
1  19, 40, 21

2  232
90

Th → 228
88

Ra + 4
2
He + energy

3  228
88

Ra → 228
89

Ac + 0
−1

e + −v + energy

4  2.7 × 107 m s−1

5  4.0 × 105 m s−1

END OF TOPIC QUESTIONS
1 B
2 A
3 C
4 a 26, 28

b 47, 62
c 79, 117
d 94, 138

6  231
90

Y + 4
2
He, 231

91 
Z, 0

0
γ

7 a 2.3 × 107 m s−1

b 2.7 × 105 m s−1

8 a  224
88

Ra → 220
86

Rn + 4
2
He

c 3.0 × 105 m s−1

9 b 3 and 0 for superscript values, 2 and −1 for 
subscript values

c 4.5 × 107 m s−1

10 a i proton/neutron
  ii electron
 b i up, up, down
  ii down, down, up
 c i proton + electron + antineutrino
  ii down changes to an up

11 b i  0
1
e+ or  0

1
β+  0

0v(e)
  ii  weak (force/interaction)
  iii mass-energy

 momentum
 proton number
 nucleon number
 charge

c 2
3 e + 23e−1

3e = (+)e
12 a electron and quark
 b i 60, 28
  ii (electron)antineutrino
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proton a− particle antineutrino

charge +1.6 × 10−19 (C) / +e −1.6 × 10−19 (C)/−e zero/0

mass 1.67 × 10−27 (kg)/1.7 × 10−27 (kg) 9.1(1) × 10−31  (kg) very small/zero/0

14 a i Q plotted at (82, 210)
ii  R plotted at (83, 210)

b lepton(s)
c up down down → up up down / udd → uud or 

down → up / d → u
15 a i alpha, neutron and proton

ii neutron
iii β+

b up/u

16 b i − 13 e
17 b i 1 to 3 × 10−10 m

ii 1 to 7 × 10−15 m

AS Level review exercise
1 a i 0.51 J
 b  390 m s–1

c i 150 J
2 b ii 1800 Ω
3 a i 800 N m–1

b ii 0.96 m s–1

4 a i 0.38 m s–2

 b  19 W
c i 20 N

ii 8.5 s
5 a i 1 0.16 Ω

2 14 − E
ii 7.3 V

b i 1.8 × 105 C
ii 2.5 × 106 J
iii 3.6 × 105 J

c 86%
6 a i 7.5 m s–1

ii 13 m s–1

b  8.6 m
c i 0.73 N s

7 a  250 Hz
c i 630 nm

8 b i 0.018 m
9 a  kg m–2 s–3

b ii 9.4 m s–1

10 b i 4.0 Ω
ii 2.0 Ω

c 2.0 V
d i 72 W

ii 192 W
11 b i 1 0.68 m s–2

2 8.6 × 105 J
iii 9.1 kW

A Level
12 Motion in a circle
Questions
1  60 m
2  4.5 rad s−1

3 a 0.20 m s−1

b 0.52 rad s−1

 c  0.10 m s−2

4  4.7 N
5 a 660 m

b 5000 N

END OF TOPIC QUESTIONS
2 a 3.32 rad s−1

b 0.53 revolutions per second
3 a 7.8 km s−1

b 88.7 minutes
4 a ii 1 3 mg

2 4 mg
4 b i 6.4 rad s−1

ii  4.6 m s−1

13 Gravitational fields
Questions
1  4.6 × 1016 N
2  1.4 hours
3  25 N kg−1

4 a −1.4 × 1010 J
b 1.1 × 104 m s− 1

END OF TOPIC QUESTIONS
1  3900 kg m−3

2  7.78 × 108 km
3  −0.50%; −0.25%
4  6.2 × 10−11 N
5 b ii 8.85 × 104 km
6 c 1.0 × 1026 kg
7 c 1330 kg m−3

Topic 14 Temperature
Questions
1 a 423 K

b 123 K
2 a 8.3 × 104 J

b 87 J
3  4200 J kg−1 K−1
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4 a i 25 kJ
ii 172 kJ

b 6.9
5  480°C
6  44 g

END OF TOPIC QUESTIONS
1  −18°C
2 a 22.6 g
3  105 g
4 b 400 W

15 Ideal gases
Questions
1 a 2.33 × 10−26 kg

b 6.24 × 1024

2  3.3 × 10−9 m
3  1.29 kg m−3

4  1.1 mol; 6.65 × 1023; 2.1 × 1025 m−3

5  8.0 × 10−5 m3

6  8.7 × 10−6 m3

7  1.1 × 10−20 J
8  630 m s−1

END OF TOPIC QUESTIONS
1  212 kPa
2  1.28
3  6100 m s− 1

4 c i 500 m s−1

  ii 4.0 × 105 m2 s−2

5 b ii 360 K
6 c  580 m s−1

16 Thermodynamics
Questions
1  1800 J
2  75 J
3  350 J by the system

END OF TOPIC QUESTIONS
1 0,  250 J
2  30 J increase
3  7 kJ
4 b i 0
  ii 240 J
  iii

change work done on 
gas/J

heating 
supplied to 
gas/J

increase 
in internal 
energy/J

P → Q 240 J −600 −360 J

Q → R 0 +720 720 J

R → P −840 J +480 −360 J

5 b iii 48 J increase
  iv 1.2 × 1022

6 b ii 2270 kJ kg–1

17 Oscillations
Questions
1 a x = 0.20 sin 4.2t

b 0.24 s
2 a 0.166 J

b 0.542 J
c 0.708 J

END OF TOPIC QUESTIONS
1 a 400 Hz

b 2.51 × 103 rad s−1

c 10.1 m s−1

d 2.53 × 104 m s−2

e 3.6 mm
f 8 .1 m s−1

2 a 6.4 N m−1

b 15 mm
c 0.53 s
d 10.8 mm above equilibrium point

3  3.2
4 a i  1 1.7 cm

 2 2.8 Hz
 c 1.2 mm
5 a ii 3.8 Hz
 b ii 17 mm

18 Electric fields
Questions
2 a right

b left
c left
d right

3  8.8 × 1013 m s−2

4 a  5.0 × 104 V m−1

 b 2.4 × 10−12 C
5  5.5 mm upwards
6  3.7 × 10−13 N repulsion
7  7.2 × 10−8 C
8  0.45 J

END OF TOPIC QUESTIONS
1 a 3.7 × 10−14 m
2 b ii 2 8.3 × 105 m s− 1

4 a i 17 N
ii 7.8 × 10−13 J

 b  1.5 × 107 m s−1

19 Capacitance
Questions
1  450 µF
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s 2  1.43 × 10−9 F

3 a 1.5 mC
 b ii 500 µF
  iii 3.0 V
  iv 0.75 mC
4  45 mC
5 a 2.4 × 10−4 C

b 1.5 × 10−4 C
c 12.5 V

END OF TOPIC QUESTIONS
1 a 2.0 µF

b 1.2 µF
2 a i 2.7 × 10−4 J
  ii 9.0 × 10−5 C
 b i 3.0 × 10−5 A
  ii 3.0 s
  iii 1.2 V
3 b i 8 µF
  ii 6.0
  iii 36 µC
4 a ii  7.0 s

 iii 2.0 × 104 Ω
b i 14 s

20 Magnetic fields
Questions
1   Diagram should be as in Fig. 20.4 but with the 

direction of field lines reversed
2 

S

S

N

N

3  5.0 × 10−7 N
4 a 0.030 N m−1

b 0.026 N m−1

5 a 9.4 × 106 m s−1

b 9.2 cm
6  5.0 × 106 m s−1

7  0.40 μV

8 
a

b

c

9 

10  opposite directions with radii ratio a /e− = 3600
11 a 0

b 15 mWb
c 8.6 mWb

12 a i 1360 m2

 ii 5.44 × 10−2 Wb
 iii 5.44 × 10−2 V

13  0.17 V
14 a 2.0 m2 

b 0.30 Wb
c 0.30 V

END OF TOPIC QUESTIONS
1 a ii 3.1 × 104 A
2 a i 8.0 × 10−5 T
  ii 1.3 × 10−3 N m−1

3 a 0.15 T
5 b i 53 mV
  ii 0 V; 53 mV; –0 V
   0 V; –0.20 V

21 Alternating currents
Questions
1  V= 325 sin 314t
2  10
3  28 mV
4 19.8 mV
5  17 V
6 a i 325 V
  ii 1.5 kW
 b  3.0 kW; 0 kW

b
a

c
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END OF TOPIC QUESTIONS
1  20 V; 2.4 A
2 a 340 V

b 14 mA

22 Quantum physics
Questions
1 a 290 nm

b 2.3 × 10−27 N s
2  345 nm
3  5.9 × 1014 Hz
4 a 1.4 × 015 Hz

b sodium and zinc
5  9.7 × 10−12 m
6   4.8 × 10−11 m
7  2.4 × 103 m s−1

8   488 nm
9  3.2 × 1015 Hz
10  9.1 × 10−8 m

END OF TOPIC QUESTIONS
2 a 1.0 × 1011

b 1.0 × 10−27 N s
c 1.0 × 10−16 N

3 a 510 nm
 b i 4.1 × 10−19 J
  ii 9.4 × 105 m s−1

4 a 4.4 × 10−32 m
b 2.7 × 10−35 m
c 2.4 × 10−11 m
d 1.3 × 10−13 m

6 b 4.56 × 10−19 J
 c i 890 nm
  ii 280 nm

23 Nuclear physics
Questions
1  0.108517 u
2  101 MeV
3  7.21 MeV per nucleon
4 a 0.6899 u

b 1.03 × 10−10 J
c 1.06 × 10−12 J

5 c 5.0 MeV
6 a 1

4
b 1/1024
c 3

4
d 15/16

7 a 2.0 × 106 Bq
b 3200 Bq

8  2.8 days
9 a 19.8 min

b 5400 years
10  1.3 × 10−5 s−1

END OF TOPIC QUESTIONS
1 b 6.0 hours
2  0.687u; 642 MeV; 6.62 MeV per nucleon
3 a 0.214 u

b 199 MeV
c 8.2 × 1010 J
d 74 g

4 a 4.96 MeV
b 14 MeV

5  7.8 × 10−11 kg
6 a 2.6 hours

b 9.1 × 1020

7 b i 3.6 × 104 Bq
  ii 8.2 × 10−4 s−1

24 Medical physics
Questions
1 b 9.4 × 10−3

2  0.2
3  1.66 × 10−11 m
5  20 cm
6  0.019
9  1.4 MeV

END OF TOPIC QUESTIONS
2  0.908I incident on fat−muscle boundary
  0.904I transmitted through fat−muscle boundary
  0.332I incident on muscle−bone boundary
  0.21I transmitted into bone
5 b P: 5, Q: 9, R:7, S:13
6 c 0.512 MeV

25 Astronomy and cosmology
Questions
1  600 W m−2

2 a 5.5 × 1029 W
b 1.8 × 1019 m

3  Rigel 12100 K; Betelgeuse 3300 K
4  3.3 × 107 km
5  6500 km s–1 away from Earth
6  2.9 × 108 years
8  2.9 cm

END OF TOPIC QUESTIONS
1 c 490 W
2 b i 3000 K
  ii 2.6 × 1011 m
3 b 13.7 km s−1 radially towards Earth
4 b ii 7.5 × 108 years
6 a L luminosity, A surface area (of star), T surface 

temperature
7  5800 K
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END OF TOPIC QUESTIONS
1 a x measured and recorded with an appropriate 

unit to the nearest millimetre and V1 and V2 
measured and recorded with the unit ‘V’ (volt) to 
the nearest 0.01 V.

 magnitude of V2 > magnitude of V1
b Six sets of results for x, V1 and V2. Each column 

heading should be labelled with a quantity and a 
unit, as the example shows, there should not be 
units in the body of the table.

x / cm V1 / V V2 / V (V2 – V1) / V
V1

x
 / V cm–1

 All values of x should be given to the nearest 
millimetre and all values of V1 and V2 given to 
the nearest 0.01 V. At least one value of x should 
be less than 10.0 cm and one value greater than 
70.0 cm.

 Each calculated value of 
V1

x
 should have the same 

number of significant figures (or one more) than 
the number of significant figures in the quantity 
with the least significant figures of V1 and x.  
For example, if x is measured to three significant 
figures and V is measured to two significant

 figures, then 
V1

x
 should be recorded to two

 (or three) significant figures (but not one or four  
or more).

 
V1

x
 calculated correctly for each row.

 c i Each axis should be labelled with a quantity 
and a unit, for example (V2 – V1)/V on the

   y-axis and 
V1

x
 /V cm–1 on the x-axis. Scales

   added to each axis every 2 cm. Scales should 
be simple e.g. 0, 10.0, 20.0, 30.0, 40.0, etc. 
The scales on each axis should allow the 
plotted points to occupy at least half the 
graph grid in both the x-direction and the 
y-direction. 

   Points should be indicated by a fine cross or 
an encircled dot. The diameter of the point 
should be less than 1 mm. All the data should 
be plotted to better than 1 mm. The quality of 
the experiment is assessed by checking that 
all the plotted points are within 0.040 V of a 
straight line.

  ii The straight line of best fit should show an 
even distribution of points on either side of 
the line along its whole length. The thickness 
of the line should be less than 1 mm. If 
one point does not follow the trend, then 
the point should be circled and labelled 
anomalous.

  iii Gradient calculated by substituting the co 
ordinates of two data points that are on the 
straight line of best fit line into 

   gradient = 
y2 − y1

x2 − x1
   The two points on the line chosen for the 

calculation should be separated by more than 
half the length of the line drawn. y-intercept 
determined either by reading off the y-axis if

   
V1

x
 is zero or by substituting the coordinates of

   a point on the straight line of best fit and 
the gradient should be substituted into the 
equation of a straight line y = mx + c,  
i.e. c = y – mx.

d P = gradient and Q = y-intercept. Unit for  
P: m, cm or mm or equivalent and unit for Q : V.

2 a h0 measured and recorded to the nearest 
millimetre and an appropriate unit given.

 b i h measured to the nearest millimetre.
  ii y calculated with consistent unit.

c Percentage uncertainty = 
∆y

y
 × 100 where  

∆y is 3 or 4 mm.
d Time for at least five oscillations. 
 Timings repeated. 
 Average T determined.
e New value of h and y. 
 New value of T determined. 
 New value of T greater.

 f i c calculated for twice.
  ii Percentage difference between the two values 

calculated and compared with the percentage 
uncertainty.

g g determined with correct unit and correct 
power of ten.

h 

sources of uncertainty and 
limitations

improvements

two sets of readings are 
not enough to get a valid 
conclusion

take many readings and plot 
a graph of T against √y

when measuring h, the rule 
may not be vertical

use a set square positioned 
against the floor and the rule

initially the blade is not 
horizontal so h0 is not exact

mark the position of the 
centre of the mass

difficult to judge the centre 
of the mass to measure h

measure h at both sides of 
the mass and average

difficult to judge the start 
or end of the oscillations

video oscillations and timer 
and play back frame by frame

3 Stage 1: Understanding the problem. 
  The independent variable is p and the dependent 

variable is B. Keep the current in the coil constant. 
Keep the number of turns of the coil constant.
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  Stage 2: Method
  Diagram with all the apparatus placed on a bench. 

All the apparatus labelled, with a Hall probe 
positioned at point P with a ruler supported by 
a retort stand. Circuit diagram showing the coil 
connected to a d.c. power supply and ammeter. 
Include a variable resistor in the circuit so that the 
variable resistor may be adjusted so that the current 
is constant. The use of a ruler to measure distance p. 
Detailed information about measuring the distance 
p, for example placing a wooded ruler across the top 
of the iron core, recording the reading of the rule at 
the top of the iron core and at point P.

   Detail on using the Hall probe, for example, 
rotate the Hall probe until maximum reading 
is obtained, repeat each experiment for the 
same value of p and reverse the direction of the 
current/Hall probe and average the reading from 
the Hall probe and calibrate the Hall probe in a 
known magnetic field. To increase the size of the 
magnetic field, use a large number of turns on the 
coil and use a large current.

   Stage 3: Analysis
   Since B = kNIe−αp

  ln B = −αp + ln kNI
   Plot a graph of ln B against p. If the relationships 

is valid then the graph will be a straight line with 
gradient = – α and y-intercept = ln (kNI).

   α = –gradient

k = 
ey−intercept

NI
   Stage 4: Safety
   With a large current in the coil, the coil may become 

hot so do not touch coil or switch off current when 
not in use.

4 a gradient = R
E

 y-intercept = r
E

b 1
I  / A

–1

29 or 29.4 ± 1.7

22 or 21.7 ± 0.9

18 or 17.9 ± 0.6

15 or 15.2 ± 0.5

13 or 13.2 ± 0.3

12 or 11.9 ± 0.3

 Notes: since all the current values are given to two 
significant figures, then the number of significant 
figures in 1

I
 should be either two or three.

c i All six data points plotted on the graph grid to an 
accuracy of better than 1 mm. All six error bars 
plotted to an accuracy of better than 1 mm.

ii Straight line of best fit with points balanced. 
Steepest or shallowest worst acceptable line 
drawn through the error bars of all the  
data points. Worst acceptable line labelled or 
dashed. If dashed, the dashes must clearly pass 
through each error bar.

iii Gradient of the line of best fit determined using 
points from the line of best fit substituted into

 
y2 − y1

x2 − x1

 with the points on the line chosen for

 the calculation should be separated by more 
than half of the length of the line drawn. The 
reading of the data point should be better than

 1 mm. If the calculation of 1
I
 and the graph are

 correct then the gradient should be about 50.
 Gradient of the worst acceptable line 

determined using points from the worst 

 acceptable line substituted into 
y2 − y1

x2 − x1

 with the

 points on the line chosen for the calculation 
should be separated by more than half of the 
length of the line drawn. The reading of the 
data point should be better than 1 mm. 

 Uncertainty in gradient = gradient of line of 
best fit – gradient of worst acceptable line

iv y-intercept of the line of best fit determined 
using points from the line of best fit and 
the gradient substituted into y = mx + c. The 
reading of the data point should be better than 
1 mm. If the calculation of 1

I
 the graph and

 the gradient are correct then the y-intercept 
should be about 5.

 Intercept of the worst acceptable line determined 
using points from the worst acceptable line 
and the gradient of the worst acceptable line 
substituted into y = mx + c. The reading of the 
data point should be better than 1 mm.

 absolute uncertainty = y-intercept of line of  
best fit – y-intercept of worst acceptable line

d i E = 
470

gradient
 = 

470

50
 = 9.4 V

 r = E × y-intercept = 9.4 × 5 = 47 Ω OR

 r = 
470

gradient
 × y-intercept = 

470

50
 × 5 = 47 Ω

ii percentage uncertainty in r = percentage 
uncertainty in gradient + percentage 
uncertainty in y-intercept
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absolute uncertainty The size of the range of values within 
which the ‘true value’ of a measurement is likely to lie.

absolute zero The lowest possible temperature: zero kelvin on 
the thermodynamic temperature scale.

absorption spectrum A spectrum of light transmitted through 
a low pressure gas, showing dark lines due to absorption at 
specific wavelengths. 

acceleration of free fall The same uniform acceleration with 
which all objects fall near the surface of the Earth, due to 
Earth’s uniform gravitational field.

accuracy The closeness of a measured value to the ‘true’ or 
‘known’ value; it depends on the equipment and techniques 
used and the skill of the experimenter.

activity The activity of a radioactive source is the number of 
nuclear decays occurring per unit time in the source.

adiabatic (change) Change that takes place where no thermal 
energy can enter or leave the system

air resistance The forces that oppose the motion of an object as 
it passes through the air.

alternating current A current or voltage that reverses its 
direction regularly and is usually sinusoidal.

ampere The SI base unit of current.

amplitude The maximum displacement of an oscillation.

analyser Acts as a second polariser after an initial polariser has 
filtered light waves from a normal source to generate plane-
polarised light.

angular frequency The constant w in the defining equation for 
simple harmonic motion; w = 2π/T.

angular speed For an object moving in a circle, the angular 
speed is defined as the angle swept out by the radius of the 
circle per unit time.

angular velocity The angular speed in a given direction.

annihilation Occurs when a particle interacts with its 
antiparticle, releasing their combined mass as energy in the 
form of photons.

antineutrino The antimatter equivalent of the neutrino, it has 
no electrical charge and little or no mass and is emitted from 
the nucleus at the same time as the b – particle.

antinode A point of maximum amplitude.

antiparticle All fundamental particles have a corresponding 
antimatter particle with the same mass but opposite charge.

antiphase When a crest and a trough of two waves are aligned, 
so that the waves are exactly out of phase.

antiquarks The antiparticles of quarks, which are identical 
to their corresponding quarks except that they have the 
opposite values of charge.

Archimedes’ principle The rule that the upthrust acting on an 
object immersed in a fluid is equal to the weight of the fluid 
displaced.

A-scan A technique used for the display of an ultrasound scan.

atomic mass units (u) One unified atomic mass unit (1 u) is 
equal to 1.66 × 10−27 kg.

atomic number The number of protons in the nucleus of an atom.

avalanche effect Effect in a Geiger-Müller tube where particles 
accelerated by the potential difference between the central 
wire anode and the cylindrical cathode then cause further 
ionisation.

average acceleration (change in velocity)/(time taken) or Δv/Δt.

average velocity (displacement)/(time taken) or Δx/Δt.

Avogadro constant The number of elementary entities in 1 mole 
of any substance, 6.02 × 1023.

background radiation Radiation from both natural and human-
made sources that is present in the environment all the 
time, rather than due to the deliberate introduction of a 
radioactive source.

balance point Position of a sliding contact on a wire where a 
centre-zero galvanometer reads zero; the current through 
the cell is zero and the p.d. across the length of wire is 
‘balanced’ with the p.d. across the cell.

baryons Particles made up of three quarks or three antiquarks, 
such as protons and neutrons.

base units The seven fundamental units upon which the SI 
system is founded.

becquerels Unit used to measure the activity of a radioactive 
source, where 1 becquerel is 1 decay per second.

binding energy The energy equivalent of the mass defect of a 
nucleus. It is the energy required to separate to infinity all 
the nucleons of a nucleus.

binding energy per nucleon The total energy needed to 
completely separate all the nucleons in a nucleus divided by 
the number of nucleons in the nucleus.

blueshift Effect where the spectral lines in an absorption 
spectrum from a star are observed to have a decrease in 
wavelength compared to their known values as measured in 
a laboratory.

Boltzmann constant Constant that relates the average kinetic 
energy of particles in a gas with the temperature of the gas; 
has the value 1.38 × 10−23 J K−1.

bottom (b) One of the six types or flavours of quark.

Boyle’s law Law stating that for a given mass of a gas, the 
volume V of the gas is inversely proportional to its pressure 
p, provided that the temperature is held constant:  
p1V1 = p2V2.

bridge rectifier Circuit used for full-wave rectification that uses 
four diodes arranged in a diamond pattern.

B-scan A technique used for the display of an ultrasound scan 
that consists of a series of A-scans, all taken from different 
angles, so that a two-dimensional image is formed.

capacitance The ratio of charge Q to potential V for a conductor.

capacitors Circuit components that store charge and, therefore, 
have capacitance.

cathode-ray oscilloscope (CRO) Instrument used to display, 
measure and analyse various waveforms of electrical circuits.

centre of gravity The point at which the whole weight of an 
object may be considered to act.
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centre-zero galvanometer A sensitive current-measuring 

analogue meter with a centre-zero scale that shows negative 
currents when the needle is to the left-hand side of the zero 
mark and positive currents when it is to the right.

centripetal acceleration The acceleration of any object that is 
travelling in a circle, which is always towards the centre of 
the circle.

centripetal force Force acting on any object that is travelling in 
a circle to cause the centripetal acceleration; acts towards 
the centre of the circle.

Cepheid variables Stars whose radius varies periodically; this 
causes the temperature of the star to change and so the 
luminosity also varies periodically.

chain reaction Situation where a single nuclear reaction causes 
at least one subsequent nuclear reaction, potentially giving 
a self-propagating chain of reactions.

Charles’ law Law stating that the volume of an ideal gas at 
constant pressure is directly proportional to the absolute 
temperature: V1/T1 = V2/T2.

charm (c) One of the six types or flavours of quark.

components A single vector may be split up, or resolved, into 
two components with a combined effect that is the same as 
the original vector.

compressive Describes a deformation (or force) that occurs 
(or acts) when an object is squeezed or compressed.

computed tomography Technique whereby a three-dimensional 
image through the body may be obtained using a CT scanner, 
by combining data from X-ray images of individual slices 
taken from different angles. 

conservation of kinetic energy Total kinetic energy of colliding 
bodies before collision is the same as the total kinetic 
energy afterwards.

constant phase difference Wave sources which maintain a 
constant phase difference are described as coherent sources. 
Two or more waves are coherent if they have a constant 
phase difference.

constructive Type of interference when two waves arrive at 
a point in phase and give a resultant wave with a greater 
amplitude.

continuous spectrum Spectrum that has all colours (and 
wavelengths) between two limits.

contrast An X-ray image having a wide range of degrees 
of blackening in different regions is said to have good 
contrast.

conventional current Idea that electric current is a flow of 
positive charge from positive to negative, based on early 
studies of electricity. In reality the electric current in metals 
is the flow of electrons in the opposite direction.

coplanar All in the same plane.

corrected count rate Count-rate due to a radioactive source 
where the background count-rate has been subtracted from 
the total measured count-rate.

Cosmological Principle Idea that, on a large enough scale, the 
Universe is both homogeneous and isotropic, which means 
that the Universe would have the same general appearance 
from anywhere else in the Universe as it appears from 
Earth.

coulomb Unit of electric charge.

Coulomb’s law Law stating that the force between two point charges 
is proportional to the product of the charges and inversely 
proportional to the square of the distance between them.

couple Two forces, equal in magnitude but opposite in direction, 
whose lines of action do not coincide.

critical damping  Damping that causes the displacement to 
decrease to zero in the shortest time possible, without any 
oscillation.

cycle The motion of any particle in a wave from the maximum 
positive displacement (a crest) to a maximum negative 
displacement (a trough) back to a maximum positive 
displacement.

damped Oscillations are said to be damped when frictional 
and other resistive forces cause the oscillator’s energy to 
be dissipated, and this energy is converted eventually into 
thermal energy.

daughter nuclide The new nuclide formed when one element 
changes into another due to radioactive decay.

de Broglie wavelength The wavelength associated with a 
moving particle.

decay constant k For radioactive decay, the decay constant λ is 
the probability per unit time of the decay of a nucleus.

decay curve A graph, such as that seen in radioactive decay, 
that shows an exponential decrease – the value decreases by 
the same fraction over equal time intervals.

deformation Change in shape or size of a solid object as the 
result of a force.

derived units Units consisting of some combination of the seven 
fundamental base units.

dielectric The insulating material placed between the plates of 
a capacitor to increase its capacitance.

diffraction The spreading of a wave into regions where it would 
not be seen if it moved only in straight lines after passing 
through a narrow slit or past an edge.

diffraction grating A plate on which there is a very large 
number of parallel, identical, very closely spaced slits. If 
monochromatic light is incident on this plate, a pattern of 
narrow bright fringes is produced.

direct current A steady current in one direction, such as that in 
a circuit with a battery.

discrete energy levels Certain specific energy levels that the 
electrons in an atom can have; they cannot have energies in 
between these levels.

displacement Change of position; the length travelled in a 
straight line in a specified direction from the starting point 
to the finishing point.

distance The length along the actual path travelled from the 
starting point to the finishing point.

Doppler effect The frequency change due to the relative motion 
between a source of sound or light and an observer.

down (d) One of the six types or flavours of quark.

drag force The frictional force in a fluid.

drift speed Speed of the charge carriers as they move through a 
conductor.

e.m.f. The electromotive force; it measures, in volts, the energy 
transferred per unit of charge that passes through the power 
supply.
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induced in a conductor by a varying magnetic field cause 
heating and dissipate energy.

eddy currents Currents of varying magnitude and direction that 
are induced in a conductor by a varying magnetic field.

efficiency The ratio of useful energy output from a system to 
the total energy input; a measure of how much of the total 
energy may be considered useful and is not ‘lost’.

elastic deformation Deformation where the object returns to its 
original shape and size when the load on it is removed.

elastic limit The maximum force that can be applied to a wire/
spring such that the wire/spring returns to its original 
length when the force is removed.

elastic potential energy (strain energy) Energy stored in an 
object due to change of shape or size, which is completely 
recovered when the force causing the deformation is 
removed.

electric current A flow of charge carriers.

electric field A region of space where a stationary electric 
charge experiences a force.

electric field strength The force per unit charge acting on a 
small stationary positive charge placed at a certain point.

electric potential energy  Energy due to the position of a 
charge in an electric field.

electrical potential The work done per unit positive charge in 
bringing a small test charge from infinity to the point.

electrolytic capacitor Type of capacitor where the dielectric is 
deposited by an electrochemical reaction. These capacitors 
must be connected with the correct polarity for their plates, 
or they will be damaged.

electromagnet Solenoid wound around a soft-iron core to 
increase the strength of the magnetic field.

electromagnetic force The force on a current carrying conductor 
at an angle to a magnetic field. The direction of the force 
may be predicted using Fleming’s left-hand rule.

electromagnetic induction Induction of an e.m.f. by a magnetic 
field.

electromagnetic spectrum Continuous range of frequencies (or 
wavelengths) of electromagnetic radiation.

electromagnetic waves Waves consisting of electric and 
magnetic fields that oscillate at right angles to each other 
and to the direction in which the wave is travelling.

electromotive force The energy transferred per unit of charge 
that passes through a power supply, measured in volts.

electron energy levels  Certain specific energy levels that the 
electrons in an atom can have; they cannot have energies in 
between these levels.

electron transition Movement of an electron between energy 
levels.

electrons One of the three types of particle that make up the 
atoms of all elements; they have a negative charge, a mass 
of about 1/2000 of 1 u, and are found orbiting the nucleus.

electronvolt (eV) The work done (energy gained) by an electron 
when accelerated through a potential difference of one volt. 
One eV is equivalent to 1.60 × 10−19 J.

emission line spectrum A characteristic spectrum of 
electromagnetic radiation for a particular element, emitted 

when electrons in an excited atom return to lower energy 
levels.

emission spectrum A spectrum of the electromagnetic radiation 
emitted by a source.

empirical scale of temperature A temperature scale derived by 
experiment for each particular type of thermometer, using 
the changes of state of substances at fixed temperatures to 
define reference temperatures, or fixed points.

equilibrium The state of a system or object when there is no 
resultant force and no resultant torque.

excited state The state of an electron that has absorbed energy 
and been promoted to a higher energy level.

exponential Changes by the same fraction over equal time 
intervals.

exponential decay An exponential decrease – the value 
decreases by the same fraction over equal time intervals.

extension The increase in length or deformation of a spring 
caused by a tensile force; equal to the extended length − 
natural/original length.

farad The unit of capacitance (symbol F). One farad is one 
coulomb per volt.

Faraday’s law of electromagnetic induction Law stating that 
the e.m.f. induced is proportional to the rate of change of 
magnetic flux linkage.

first harmonic The first resonant frequency of a vibration, with 
the simplest standing wave pattern: a single loop.

first law of motion Another term used for Newton’s first law.

first law of thermodynamics Law stating that the increase 
in internal energy of a system is equal to the sum of the 
thermal energy added to the system and the work done on it: 
ΔU = q + w.

first overtone The second resonant frequency of a vibration, 
where the stationary wave pattern has two loops.

fixed points Fixed temperatures at which substances change 
state, which can be used as reference temperatures when 
establishing a temperature scale.

Fleming’s left-hand rule Method of determining the direction 
of the force relative to the directions of the current and the 
magnetic field in a current-carrying conductor that is at 
angle to a magnetic field, by using the first two fingers and 
thumb of the left hand held at right angles to one another.

Fleming’s right-hand rule Method of determining the direction 
of the induced e.m.f. or current in a wire moving through a 
magnetic field at right angles to the field, by using the first 
two fingers and thumb of the right hand held at right angles 
to one another.

forced vibrations Vibrations in an object that has periodic 
forces acting on it, which make the object vibrate at the 
frequency of the applied force, rather than at the natural 
frequency of the system.

forward bias Condition in a diode where the application of a 
voltage allows it to conduct a current in the direction of the 
arrowhead on the symbol.

fractional uncertainty The ratio of the absolute uncertainty in 
a measurement to the measured value. 

free electrons Outer electrons that are not held tightly to 
the nucleus within an atom and are therefore free to move 
through a material, such as a metal.
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free oscillations A particle is said to be undergoing free 

oscillations when the only external force acting on it is the 
restoring force.

free-body diagram Labelled diagram showing all of the forces 
acting on a body, with their sizes and directions.

frequency f The number of oscillations (cycles) of a wave per 
unit time.

fringes An interference pattern where the maxima and 
minima disturbances are produced by the superposition of 
overlapping waves.

full-wave rectification Process used to convert alternating 
current into direct current by reversing the polarity of the 
negative half-cycles of the input.

fundamental mode Another term for the first harmonic.

fundamental particle A particle that is not formed from other 
particles; examples include quarks and leptons.

galaxy A group of hundreds of millions of stars, stellar remnants, 
gas and dark matter, held together by gravity.

Gay-Lussac’s law The relation between the pressure and 
thermodynamic temperature of a fixed mass of gas at 
constant volume: p1/T1 = p2/T2.

geostationary orbit Equatorial orbit with exactly the same 
period of rotation as the Earth (24 hours), in the same 
direction as the Earth (west to east), so that the orbiting 
satellite is always above the same point on the Equator.

geostationary satellites Satellites with equatorial orbits with 
exactly the same period of rotation as the Earth (24 hours), 
which move in the same direction as the Earth (west to east), 
so that they are always above the same point on the Equator.

gravitational constant Constant of proportionality G in Newton’s 
law of gravitation; the value of G is 6.67 × 10−11 N m2 kg−2.

gravitational field A region of space where a mass experiences 
a force.

gravitational field line The direction of the gravitational force 
acting on a point mass.

gravitational field strength The force per unit mass acting on a 
small mass placed at a point.

gravitational potential The work done per unit mass in bringing 
a small test mass from infinity to a point in a gravitational 
field.

gravitational potential energy Energy possessed by a mass due 
to its position in a gravitational field.

ground state The state of an atom and its electrons when the 
electrons occupy the lowest energy levels available. 

hadrons Subatomic particles that are affected by the strong 
force, for example, protons and neutrons.

half-life t½ The time taken for the number of undecayed nuclei 
in a sample of a radioactive isotope to be reduced to half its 
original number.

half-wave rectification Process used to convert alternating 
current into direct current by using a diode to reject the 
negative part of the input; the output voltage consists only 
of the positive half-cycles of the input voltage.

Hall voltage A potential difference that develops across a 
conductor when there is a current in the conductor that is 
normal to a magnetic field, due to charge carriers moving at 
right angles to the magnetic field and so experiencing a force 
that tends to make them move to one side of the conductor.

harmonic oscillator A system that, when displaced from 
its equilibrium position, experiences a restoring force F 
proportional to the displacement x and therefore follows 
simple harmonic motion.

heavy damping Damping that causes an exponential reduction 
in the amplitude of vibration of an oscillation, but over a 
greater time than for critical damping.

Helmholtz coils Two identical flat coils, with the same current 
in each, positioned so that their planes are parallel and 
separated by a distance equal to the radius of either coil.

hertz (Hz) Unit of frequency, where 1 Hz = 1 cycle per second.

Hooke’s law Law stating that, provided the limit of 
proportionality is not exceeded, the extension of an object is 
proportional to the applied load.

Hubble constant The constant of proportionality in Hubble’s 
law, H0; the present accepted value is 75 km s−1 per Mpc  
or 2.4 × 10–18 m s−1 per m.

Hubble’s law Conclusion that the radial speed at which galaxies 
are moving away from Earth is proportional to their distance 
from the Earth.

ideal gas A gas that obeys the equation of state pV ∝ T at all 
pressures p, volumes V and thermodynamic temperatures T.

impulse The product of a force acting on an object and the time 
for which it acts: impulse = FΔt.

in phase Describes particles or waves that have the same 
displacements at the same times, i.e. the crests and troughs 
of the two waves are aligned.

instantaneous velocity The average velocity measured over an 
infinitesimally short time interval.

intensity The power per unit area of a wave.

intensity reflection coefficient Ratio of the reflected intensity 
IR to the incident intensity I0 for a wave incident normally 
on a boundary between two media having specific acoustic 
impedances of Z1 and Z2: IR/I0 = (Z2 − Z1)

2/(Z2 + Z1)
2.

interference Where two or more waves meet or overlap, causing a 
resultant wave that is the net effect of the overlapping waves.

interference pattern The collection of maxima and minima 
fringes produced by the superposition of overlapping waves.

internal energy Random kinetic and potential energy of the 
molecules in an object.

internal resistance The resistance between the terminals of a 
power supply.

inverse square law Law stating that a quantity is inversely 
proportional to the square of the distance from the source of 
that quantity.

ion Charged particle formed when an atom gains or loses one or 
more electrons, so that it does not contain an equal number 
of protons and electrons.

isothermal (change) Change that takes place at constant 
temperature; the change in internal energy is zero.

isotopes Different forms of the same element that have the 
same number of protons but different numbers of neutrons in 
their nuclei.

Joule heating The heating effect caused by an electric current 
passing through a resistor.

kelvin The unit of thermodynamic temperature; one kelvin is the 
fraction 1/273.16 of the thermodynamic temperature of the 
triple point of water.
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planets or satellites describing circular orbits about the 
same central body, the square of the period is proportional 
to the cube of the radius of the orbit.

kinetic theory of an ideal gas Theory that relates the large-
scale (macroscopic) quantities p, V and T to the small-scale 
(microscopic) behaviour of the particles of a gas by making 
some very simple assumptions about the atoms or molecules 
that make up the gas.

Kirchhoff’s first law Law stating that the sum of the currents 
entering a junction in a circuit is always equal to the sum of 
the currents leaving the junction.

Kirchhoff’s second law Law stating that the sum of the 
electromotive forces in a closed circuit is equal to the sum of 
the potential differences.

latent heat of fusion The latent heat required to melt (fuse) a 
solid.

latent heat of vaporisation The latent heat required to vaporise 
a liquid without any change of temperature.

law of conservation of energy Law stating that energy cannot 
be created or destroyed, it can only be converted from one 
form to another.

law of pressures  Another term for Gay-Lussac’s law.

Lenz’s law Law stating that the direction of an induced e.m.f. is 
such as to cause effects to oppose the change producing it.

leptons Fundamental, subatomic particles that are not affected 
by the strong force, for example, electrons and positrons.

light-dependent resistor (LDR) A type of resistor where the 
resistance decreases as the intensity of light on it increases. 

limit of proportionality The point up to which the load (applied 
force) is proportional to the extension.

linear absorption coefficient A constant used in calculating 
the transmitted X-ray intensity that is dependent on the 
medium and on the energy of the X-ray photons.

linear attenuation coefficient Another term for the linear 
absorption coefficient.

linear momentum The product of the mass m and velocity v of 
an object: p = mv.

load The tensile force that causes an extension.

logarithmic scales Nonlinear scales where each interval is 
increased by a factor of the base of the logarithm, rather 
than increasing in equal increments as with a linear scale.

longitudinal (wave) Wave in which the direction of the 
vibrations of the particles in the wave is along or parallel to 
the direction in which the energy of the wave is travelling. 

luminosity The total power (the total energy emitted per unit 
time) of an object.

magnetic field A region of space where a moving charge or a 
magnetic material experiences a (magnetic) force.

magnetic field lines Lines of magnetic force; their direction 
is the direction in which a free magnetic north pole would 
move if placed in the field and their closeness indicates the 
strength of the magnetic field.

magnetic flux The product of the magnetic flux density and the 
area normal to the lines of flux: F = BA.

magnetic flux density The force per unit current per unit 
length on a wire placed at right angles to a uniform 
magnetic field.

magnetic flux linkage The product of the magnetic flux through 
a coil and the number of turns N on the coil: NF = BAN.

Malus’s law The intensity I of plane-polarised electromagnetic 
waves after transmission through a polarising filter or series 
of filters is equal to I0 cos2 q, where I0 is the maximum 
intensity and q is the angle between the polarising 
directions of the two sheets.

mass defect The difference between the total mass of the 
separate nucleons in a nucleus and the combined mass of the 
nucleus.

mass number The total number of protons plus number of 
neutrons in a nucleus.

meson A type of hadron made up of a quark and an antiquark; 
pions (π) and kappas (K) are examples of mesons.

mol Abbreviation of mole.

molar gas constant Constant of proportionality R in the 
universal gas equation; it has the value 8.3 J K−1 mol−1 for all 
gases.

molar mass The mass of 1 mole of substance.

mole The amount of substance that contains 6.02214076 × 1023 
elementary entities, usually atoms or molecules but they 
could also be ions or electrons.

momentum The product of the mass m and velocity v of an 
object p = mv; its complete name is linear momentum.

motor effect Phenomenon when a current-carrying conductor 
placed in a magnetic field experiences a force, due to the 
interaction of the magnetic field with that produced by the 
current-carrying conductor.

natural frequency The frequency of vibration at which an object 
will vibrate when allowed to do so freely.

neutral point Point in the magnetic field pattern between two 
magnets where there is no resultant magnetic field because 
the two fields are equal in magnitude but opposite in 
direction.

neutrons One of the three types of particle that make up the 
atoms of all elements; they have no charge, a mass of about 
1 u, and are found in the nucleus.

Newton’s first law Newton’s first law states that every object 
continues in its state of rest, or with uniform velocity, 
unless acted on by a resultant force.

Newton’s law of gravitation Law stating that two point masses 
attract each other with a force that is proportional to the 
product of their masses and inversely proportional to the 
square of their separation.

Newton’s second law Law stating that the resultant force acting 
on an object is proportional to the rate of change of its 
momentum.

Newton’s third law Law stating that whenever one object exerts 
a force on another, the second object exerts an equal and 
opposite force on the first.

node A point of zero amplitude.

nuclear atom Model of the atom based on the results of 
Rutherford’s α-particle scattering experiment, in which there 
is a small, positively charged nucleus at the centre of the 
atom that contains most of its mass, with negative electrons 
orbiting it; most of the atom is empty space.

nuclear fission The splitting of a heavy nucleus into two lighter 
nuclei of approximately the same mass.
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nuclear fusion When two light nuclei combine to form a nucleus 

of greater mass.

nucleon The name given to either a proton or a neutron in the 
nucleus.

nucleon number Another term for mass number.

nucleus The positively charged central part of an atom, which 
contains the protons and neutrons; almost all of the mass of 
the atom is concentrated here.

nuclide A class of nuclei that have a particular nucleon number 
and a particular proton number.

ohm The unit of resistance, which has the symbol W.

Ohm’s law Law stating that, for a metallic conductor at constant 
temperature, the current in the conductor is proportional to 
the potential difference across it.

order of magnitude The power of ten to which a number is raised.

oscillation The motion of any particle in a wave from the 
maximum positive displacement (a crest) to a maximum 
negative displacement (a trough) back to a maximum 
positive displacement.

overdamping Another term for heavy damping.

parabola The curve traced out by a particle subject to a 
constant force in one direction.

parallax error Error introduced into a measurement by reading a 
scale from different angles.

parallel circuit A circuit where the current can take alternative 
routes in different loops.

parent nuclide The original nuclide when one element changes 
into another, the daughter nuclide, due to radioactive decay.

path difference The difference between the distances travelled 
by two waves meeting at a point.

peak value The maximum value (amplitude) of the current or 
voltage from an alternating current supply.

percentage uncertainty The ratio of the absolute uncertainty 
in a measurement to the measured value, expressed as a 
percentage.

period T The time for a particle in a wave to complete one 
oscillation or one cycle.

permittivity of free space A physical constant used in 
calculating the force between charged particles in a vacuum; 
it has the symbol ε0 and a value of 8.85 × 10−12  F m−1. 

phase difference The relative positions of two points on the 
same wave, or of two waves of the same frequency, can be 
stated as a phase difference in degrees.

photoelectric emission The release of electrons from the 
surface of a metal when electromagnetic radiation is 
incident on its surface.

photoelectrons The electrons emitted by photoelectric 
emission.

photons Name given to a quantum of energy when the energy is 
in the form of electromagnetic radiation.

physical quantity A feature of something that can be measured, 
for example, length, mass or the time interval for a 
particular event; every physical quantity has a numerical 
value and a unit.

piezo-electric transducer A device that converts electrical 
energy into ultrasound energy by means of a piezo-electric 
crystal such as quartz.

pixel In CT scanning, a pixel is the number given to the intensity 
transmitted through each voxel, which are together used to 
build up an image from measurements of the X-ray intensity 
along different directions through the section or slice.

plane polarised A polarised wave is a transverse wave in which 
vibrations occur in only one of the directions at right angles 
to the direction in which the wave energy is travelling.

plastic deformation In a plastic deformation, an object does 
not return to its original shape and size when the load on it 
is removed.

polariser Filter, such as a sheet of Polaroid, that can be used to 
produce plane-polarised light from unpolarised light.

positive ion Positively charged particle formed when an atom 
loses one or more electrons.

positron The antiparticle of an electron, which has the same 
mass as an electron but opposite charge.

Positron emission tomography (PET) Technique using 
radioactive tracers that decay by emitting a positron, 
which then annihilates when it meets an electron and emits 
photons; these are detected by PET scanners, which are 
used in medical imaging and diagnosis to determine how 
well certain body functions are operating and to identify 
abnormalities.

potential difference (p.d.) The energy transferred per unit of 
charge that passes through the resistor; measured in volts.

potential energy The ability of an object to do work as a result 
of its position or shape.

potentiometer A continuously variable potential divider.

power The rate of converting energy or using energy:  
power = work done/time taken.

precision Depends on the range of a set of measured values; the 
smaller the range, the better the precision.

principle of moments States that, for an object to be in 
rotational equilibrium, the sum of the clockwise moments 
about any point must equal the sum of the anticlockwise 
moments about that same point.

principle of superposition of waves States that, when two or 
more waves meet at a point, the resultant displacement at 
that point is equal to the sum of the displacements of the 
individual waves at that point.

progressive waves Waves that transfer energy from place to 
place without the transfer of matter.

proton number Another term for the atomic number.

protons One of the three types of particle that make up the 
atoms of all elements; they have a positive charge, a mass of 
about 1 u, and are found in the nucleus.

quanta Discrete packets or quantities of energy of 
electromagnetic radiation.

quantised Exists only in discrete amounts, rather than being 
continuous.

quantum theory Theory in which electromagnetic radiation is 
thought of as consisting of packets of energy called photons.

quark Fundamental particle, different combinations of which 
make up other particles such as hadrons.

quark model Model in which the hadrons are made up 
of fundamental particles called quarks; there are six 
‘flavours’ of quark, each with a characteristic charge and 
strangeness.

482807_Glo_CI_AS_Phy_SB_3e_450-459.indd   455 6/25/20   12:02 AM



456

G
lo

ss
a

r
y quasar Very distant objects in the Universe that have very large 

redshifts and a huge luminosity.

radial All the lines (of force) appear to converge towards the 
centre.

radians One radian (rad) is defined as the angle subtended at 
the centre of a circle by an arc equal in length to the radius 
of the circle.

radiant flux intensity The radiant power per unit area passing 
normally through unit area.

radioactive Nuclei that are unstable and therefore emit particles 
and/or electromagnetic radiation in order to increase their 
stability.

radioactive decay series Sequence of radioactive decay from 
parent nuclide through succeeding unstable daughter 
nuclides, until a stable nuclide is eventually reached.

radioactivity The particles and/or electromagnetic radiation 
emitted by a radioactive nucleus.

random process Process such as radioactive decay or the 
throwing of dice, where there is a constant probability that 
a nucleus will decay in a certain time or a number will be 
thrown, but it is impossible to predict which nucleus will 
decay or which of the dice will show the number.

random error Random error in measurements due to the scatter 
of readings around the true value, which may be reduced by 
repeating a reading and averaging, or by plotting a graph 
and taking a best-fit line. 

reciprocal The quantity obtained by dividing the number one by 
a given quantity.

rectification Process used to convert an alternating current into 
a direct current.

rectifiers Devices that use diodes to change alternating current 
into direct current.

redshift Effect where the spectral lines in the absorption 
spectrum from a star are seen to have an increase in 
wavelength from their known values as measured in a 
laboratory.

relative permittivity εr The capacitance of a parallel-plate 
capacitor with the dielectric between the plates divided 
by the capacitance of the same capacitor with a vacuum 
between the plates.

resistance The ratio of the potential difference V across a 
conductor to the current I in it; good conductors have 
low resistance because they offer little opposition to the 
movement of electrons.

resistivity Property of a particular material that indicates 
how strongly it resists the flow of electrical current; it is a 
constant for that material at a particular temperature.

resistor Device that has resistance to the flow of electric 
current.

resolved (a vector) Split up into two vectors or components 
that have a combined effect that is the same as the original 
vector.

resonance When the natural frequency of vibration of an 
object is equal to the driving frequency, giving a maximum 
amplitude of vibration.

resonance curve Graph showing the variation with driving 
frequency of the amplitude of vibration of an object.

resonant frequency Frequency at which resonance occurs.

restoring force Force acting on a particle that is undergoing 
simple harmonic motion; this force always acts towards the 
fixed point about which the particle is moving.

resultant The combined effect of two different vectors.

reverse bias Condition where a diode will not conduct because 
of its very high resistance when the voltage (potential 
difference, high to low) is in the opposite direction to the 
arrowhead on the symbol (potential difference is reversed 
compared with the forward bias condition).

rheostat A type of resistor that can produce a continuously 
variable voltage.

right-hand grip rule Method used to find the direction of the 
field in a solenoid, where the solenoid is grasped in the 
right hand with the fingers pointing in the direction of the 
conventional current; the thumb then gives the direction of 
the magnetic field.

root-mean-square r.m.s. The r.m.s. value of the alternating 
current or voltage is that value of the direct current or direct 
voltage that would produce thermal energy at the same rate 
in a resistor.

root-mean-square speed or r.m.s. speed A measure of the 
speed of the molecules in a gas, equal to the square root of 
the average velocity squared of the molecules. 

scalar quantity A quantity that can be described fully by giving 
its magnitude and unit; it does not have a direction.

scintillation A tiny pulse of light.

second harmonic Another term for the first overtone.

series circuit Circuit in which the components are connected 
one after another, forming one complete loop.

simple harmonic motion (s.h.m.) The motion of a particle 
about a fixed point such that its acceleration a is 
proportional to its displacement x from the fixed point, and 
is in the opposite direction.

smoothing Use of a capacitor to reduce the fluctuations in the 
unidirectional output produced after rectification and to 
give a steady direct current.

solenoid A coil of wire used as an electromagnet.

specific acoustic impedance Z The product of the density ρ of a 
medium and the speed c of a wave in the medium: Z = ρc.

specific heat capacity The quantity of thermal energy per unit 
mass required to raise the temperature of the substance by 
one degree.

specific latent heat of fusion The quantity of thermal energy 
per unit mass required to convert solid to liquid without any 
change in temperature.

specific latent heat of vaporisation The quantity of thermal 
energy per unit mass required to convert liquid to vapour 
without any change in temperature.

spectrometers Instruments used to investigate spectra and 
measure their wavelengths.

spectroscopy The study of spectra.

speed Scalar quantity that shows how fast an object is moving: 
average speed = distance moved along actual path/time taken.

spring constant The force per unit extension, k = F/x.

standing waves The result of the overlapping and hence 
interference of two waves of equal frequency and amplitude, 
travelling along the same line with the same speed but in 
opposite directions.
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stationary waves Another term for standing waves.

strain A measure of the extent of the deformation when an 
object has its shape or size changed by forces acting on it.

strange (s) One of the six types or flavours of quark.

strangeness One of the properties of quarks.

stress The force acting per unit area so as to cause a strain.

strong force The force that holds the nucleons in a nucleus 
together.

strong nuclear force Another term for the strong force.

supernovae Stellar objects used as standard candles for galaxies 
that are a very long distance from Earth.

systematic error An error that results in all readings being 
either above or below the true value, by a fixed amount and 
in the same direction each time the measurement is taken.

Système Internationale (SI) System of units founded upon seven 
fundamental or base units and based on the metric system of 
measurement, which is used by scientists around the world.

tensile Relating to stretching.

tensile strain Extension/original length

tensile stress Stress per unit area caused by a tensile force: 
tensile stress = force/cross-sectional area.

terminal potential difference The potential difference across 
the terminals of a cell or power supply  when a current is 
being delivered.

terminal velocity The maximum velocity of an object moving 
through a resistive fluid (a liquid or a gas).

thermal equilibrium When different regions in thermal contact 
are at the same temperature.

thermistors Negative temperature coefficient devices, which 
have a resistance that decreases significantly with rise in 
temperature.

thermocouple Device where one end of each of two wires of 
different metals are twisted together and the other ends 
are connected to the terminals of a sensitive voltmeter; an 
e.m.f. is produced and the reading on the voltmeter depends 
on the temperature of the junction of the wires.

thermodynamic temperature scale Temperature scale based 
on the theoretical behaviour of a so-called ideal gas, which 
starts with zero at absolute zero (−273.15°C).

thermonuclear reactions Reactions requiring conditions of 
extremely high temperature and pressure, similar to those 
found at the centre of the Sun.

threshold frequency The minimum frequency of incident 
radiation required to cause photoelectron emission from the 
surface of a particular metal: hf0 = φ.

threshold wavelength The maximum wavelength corresponding to 
the threshold frequency to give rise to photoelectric emission.

top (t) One of the six types or flavours of quark.

tracers Chemical compounds in which one or more of the 
atoms have been replaced by radioactive nuclei of the 
same element that can then be used to locate or follow the 
progress of the compound in living tissues.

transformer An electrical device consisting of two or more 
coils wound around the same core that allows the transfer of 
electrical energy between circuits.

transmutation The process by which one element turns into 
another as a result of radioactive decay.

transverse (wave) Wave in which the vibrations of the particles 
in the wave are at right angles to the direction in which the 
energy of the wave is travelling.

ultrasound Sound with frequencies above the range of human 
hearing, typically above about 20 kHz.

unified atomic mass units (u) One unified atomic mass unit 
(1 u) is equal to 1.66 × 10−27  kg.

universal gas constant Another term for the molar gas constant.

unpolarised Describes waves where the vibrations take place in 
many directions in a plane at right angles to the direction of 
the wave energy.

up (u) One of the six types or flavours of quark.

upthrust Upward force on an object immersed in a fluid due to 
the pressure of the fluid on it.

variable resistor Another term for a rheostat.

vector quantity A quantity that has magnitude, unit and 
direction; they may not be added algebraically.

vector triangle Diagram used to find the resultant of two 
vectors by representing them in magnitude and direction by 
the sides of a triangle; the third side gives the magnitude 
and direction of the resultant.

velocity A vector quantity representing the rate of change of 
distance with time, and the direction in which it is moving.

viscous force The frictional force in a fluid (a liquid or a gas).

volt Unit used to measure potential difference.

voxels Series of small units that an object undergoing CT 
scanning is divided into in order to produce an image; each 
voxel will absorb the X-ray beam to a different extent.

watt The unit of power (symbol W), equal to a rate of working of 
1 joule per second.

wavefront Imaginary line joining points on a wave that are in 
phase.

wavelength The minimum distance between particles which are 
vibrating in phase with each other, i.e. between two crests 
or two troughs of a wave.

weak force Force responsible for b-decay in a nucleus.

weak interaction Another term for the weak force.

weber (Wb) Unit of magnetic flux; one weber is equal to one 
tesla metre-squared, i.e. T m2.

weber per square metre (Wb m−2) An alternative name for the 
tesla (T), which is the unit of magnetic flux density.

weight The force of gravity that acts on an object: W = mg.

weightlessness Apparent weightlessness occurs when an object 
is in free fall and there is no external contact force acting 
upon it.

work Work is done when a force moves the point at which it acts 
(the point of application) in the direction of the force: work 
done = force × displacement in the direction of the force.

work function energy F The minimum amount of energy 
necessary for an electron to escape from the surface of the 
metal during photoelectric emission.

Young modulus Property of a material defined as Young modulus 
= stress/strain.

a+ emission Type of radioactive decay used in PET scans, where 
a proton in the nucleus forms a neutron, a positive electron 
and a neutrino.
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A
absolute uncertainty   10
absolute zero   246
absorption spectra   361–2

stars   408
acceleration   34, 46

centripetal   225–6, 229
kinematic equations   35–6, 39–42
Newton’s second law of motion    
53–4, 55
non-uniform   42–3

acceleration of free fall   36–9, 46,  
232, 238
acceleration–time graphs   42

simple harmonic motion   276
accuracy   11–12, 24
acoustic impedance   384, 400
activity, radioactive sources   376, 378
adiabatic change   268
air resistance   59
alpha (α)-decay   200, 212
alpha (α)-particles   199–200, 203, 212

kinetic energy of   202
scattering experiment   206–8

alternating current (a.c)   340–1, 347
cathode ray oscilloscope 
measurements   341–3
power   343–4
rectification and smoothing   345–7
root-mean-square (r.m.s.) values   344

ampere (amp, A)   162
amplitude of an oscillation   273, 282
amplitude of a wave   112

stationary waves   143
analysers   124–5
angular frequency   274
angular speed   224, 229
angular velocity   224, 229
annihilation   398, 400
antineutrinos   201
antinodes   141–3
antiparticles   200, 209, 212

annihilation   398, 400
antiphase   113
antiquarks   210
Archimedes’ principle   80
A-scans   387
atomic mass units (u)   197, 365–6
atomic number (proton number, Z)   162
atoms   161–2, 196–7, 212

forces in   208
fundamental particles   208–11
isotopes   198
nuclide notation   198

attenuation of ultrasound   385–6
attenuation of X-rays   391–2
avalanche effect   204

average acceleration   34, 46
average speed   30–1, 46
average velocity   32, 46
Avogadro constant (NA)   254, 256, 261

B
background radiation   199
balances   57
balancing equations   7–8
banking   227
barium meals   391
Barton’s pendulums   281–2
baryons   210, 212
base units   2–3, 24
batteries, internal resistance   179–81
becquerel (Bq)   376
Bernoulli, Daniel   258
beta (β)-decay   201–2, 211, 212

β+ emission   398
beta (β)-particles   200–2, 203, 212

kinetic energy of   202
Big Bang   411
binding energy   367, 378
binding energy per nucleon   368–9
black-body radiation   405–6
blueshift   120, 408
Boltzmann constant   256, 261
bottom (b) quarks   209
Boyle, Robert   254, 258
Boyle’s law   254
Brahe, Tycho   2, 235
braking, electromagnetic   335
Bremmstrahlung radiation   389
bridge rectifier   346
Brown, Robert   258
B-scans   388
bubble chambers   321
buoyancy force (upthrust)   79–80

C
calibration   14
capacitance   302–3, 312

influencing factors   304
capacitors   303, 312

discharge   309–11
energy storage   307–8
series and parallel connection   305–7
smoothing   346–7
uses of   311
variable   305

cathode ray oscilloscope (CRO)   117–18, 
126

period and frequency measurement   
341–2
ultrasound scans   387–8
voltage and current measurement   
342–3

Celsius scale   247
centre of gravity   73, 80
centre-zero galvanometer   188
centrifuges   227–8
centripetal acceleration   225–6, 229
centripetal force   225, 229
Cepheid variables   404
chain reactions   372
changes of state

internal energy   269
latent heat   249–50, 251

charge   162, 173, 286–7, 299
force between point charges   294–5
specific charge of an electron   322–3

charged particles
motion in an electric field   291–3
motion in a magnetic field   320–4

charging by induction   289
Charles’ law   254–5
charm (c) quarks   209
circuit diagrams   177–8
circuits

Kirchhoff’s laws   181–3
potential dividers   185–9
series and parallel   181–2, 183–5

circuit symbols   178
circular motion   229

angular speed and velocity   224
centripetal acceleration and 
centripetal force   225–6
examples   226–8
vertical   228–9

circular orbits   234–6, 240
circular waves   116
coherent waves   137, 154
collisions   62, 67

elastic and inelastic   64–6
impulse   63

components of vectors   23–4, 25
compressive deformation   100
computed tomography (CT scanning)   
393–6, 400
conservation of energy   89, 266

Kirchhoff’s second law   182–3
conservation of momentum   61–2, 67
constructive interference   134, 154
continuous spectra   358, 361
conventional current   163, 173
cosine rule   28
Cosmological Principle   411
coulomb (C)   161, 163
Coulomb, Charles   294
Coulomb’s law   294, 299
couples   75, 80
critical damping   279–80
CT (computed tomography) scanning   
393–6, 400
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current–voltage (I–V) characteristics   
167–8, 173
cycles (oscillations)   112

D
damping   279–80, 281–2, 283
data   415
daughter nuclides   200
de Broglie wavelength   357–8, 363
decay constant (λ)   375
decay curves   374
deformation   100, 106

elastic and plastic   104
Hooke’s law   100–1
Young modulus   101–3

density (ρ)   78, 80
derived units   6
destructive interference   134–5, 154
dielectric   304
differentiation   333
diffraction   149–52, 154

electron diffraction   356–7
diffraction gratings   152–3

with white light   153
diodes   168–9, 173

rectification   345–6
direct current (d.c)   340
discharge tubes   358
discharging a capacitor   309–11
discrete energy levels   359
displacement   29–30, 31–2, 88

for non-uniform acceleration   42–3
of an oscillation   273, 282
of particles in waves   111–14
from a velocity–time graph   40–1

displacement–distance graphs   112
displacement–time graphs   33, 41, 46

oscillations   273, 275
waves   112

distance travelled   29–30, 46
kinematic equations   35–6, 39–42

Doppler effect   119–20, 126, 408
down (d) quarks   209
drag forces (viscous forces)   58–9
drift speed   163–4

E
eddy current damping   335
efficiency   90–1, 96
Einstein, Albert   350, 366, 411

theory of photoelectric emission   
354–5

elastic collisions   64–6, 67
elastic deformation   104, 106
elastic limit   104, 106
elastic (strain) potential energy   93–4, 
104–5, 106
electrical power   166
electric current (I)   161–3, 173

conduction of   163–4
current–voltage (I–V) characteristics   
167–8

heating effect   167
magnetic effect   317–20
magnetic fields   326–8
see also alternating current

electric field patterns   288
electric fields   287–8, 299, 328–9

induced   289
motion of charged particles in   291–3
of a point charge   295–6
uniform   290–1

electric field strength   289–91, 297–8, 
299
electric potential   296–7, 299
electric potential energy   298, 299

capacitors   307–8, 312
electrolytic capacitors   304
electromagnetic force   317–20
electromagnetic induction   331–4, 337

applications of   335–6
electromagnetic radiation, wave–particle 
duality   356–7
electromagnetic spectrum   121–2
electromagnetic waves   111, 121, 126
electromagnets   328
electromotive force (e.m.f.)   178, 190

comparing using a potentiometer   
188–9
Kirchhoff’s second law   182–3
measurement   180

electron diffraction   356–7, 363
electrons   161–2, 196–7

energy levels   359–60, 363
specific charge of   322–3

electron transitions   360–1, 362
electronvolt (eV)   350
emission spectra   358–9, 361
empirical scales   245–6
energy   89, 96

conservation of   89, 182–3, 266
forms of   90
internal   264–5, 267–8, 269
mass–energy equivalence   366–7
in simple harmonic motion   277–9, 
283
thermal   247–51, 265–6
see also kinetic energy; potential 
energy

energy levels   359–60, 363
energy storage, capacitors   307–8, 312
energy transformations   89
equation of state for an ideal gas   256, 
261
equations, homogeneous   7–8
equilibrium   77, 80

principle of moments   75–6
thermal   244

errors   9–11, 25
systematic and random   13–15
see also uncertainties

estimation   5–6
excited electrons   359–60, 363
exponential decay

attenuation of ultrasound   385–6

attenuation of X-rays   392
capacitor discharge   309–11
radioactive   377, 378

extension of a spring, Hooke’s law   100–1

F
farad (F)   303
Faraday, Michael   331

law of electromagnetic induction   
332, 333, 337

fields
comparison of   328
see also electric fields; gravitational 
fields; magnetic fields

film badge dosimeters   204–5
fine-beam tube   322–3
first harmonic   141
first law of thermodynamics   267–8, 269
first overtone (second harmonic)   142
Fleming’s left-hand rule   318, 337
Fleming’s right-hand rule   332–3, 337
forced oscillations   280, 283
force–extension graphs   104–5, 106
forces   52–3

centripetal   225, 229
on a charge in a magnetic field   
320–4
on a charge in an electric field   290
couples   75
electromagnetic   317–20
equilibrium   75–7
free-body diagrams   60
gravitational   233–4
inside an atom   208
Newton’s laws of motion   53–8
non-uniform motion   58–9
between parallel conductors   329
between point charges   294–5, 299
restoring force   275

formulae   415
forward bias   169
fractional uncertainty   16–18, 25
free-body diagrams   60
free electrons   162
free fall, acceleration of   36–9, 46, 232, 
238
free oscillations   279, 283
frequency of an alternating current   
341–2
frequency of an oscillation   273, 282

angular frequency   274
frequency of a wave   113
friction   53, 58–9, 67
fringes   136

conditions for   139
white light   140
Young’s double-slit experiment   
138–9

fundamental mode of vibration   141
see also natural frequency

fundamental particles   208–11
fusion, latent heat of   249–50, 251, 269
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galaxies   404, 408
Hubble’s law   410

Galileo Galilei   38–9, 43, 53
galvanometers   188
gamma (γ)-radiation   203, 212
gases, kinetic theory of   257–61, 261
gas expansion, work done by   266–7
gas laws   254–7, 261

internal energy   264–5
Gay-Lussac’s law (law of pressures)   255
Geiger, Hans   206
Geiger counter   204
geostationary orbit   236
gold-leaf electroscope   351–2
graphs

acceleration–time   42, 276
displacement–time   33, 41, 46, 112, 
273, 275
force–extension   104–5, 106
of kinematic equations   40–2
labelling conventions   8–9, 24
of oscillations   273, 275
position–time   32–3
of simple harmonic motion   276
velocity–time   33, 40–2, 46, 276
of waves   112, 114

gravitation, Newton’s law of   233–4
gravitational constant   233
gravitational field lines   232
gravitational fields   36, 231, 240, 328

around a uniform sphere   233
of a point mass   237–8

gravitational field strength   232, 240
acceleration of free fall   238

gravitational force   233–4
circular obits   234–6

gravitational potential   239–40
gravitational potential energy   93–4, 
239–40
gravity   231
ground state   359–60

H
hadrons   209–10, 212
half-life (t1/2)   374–5, 378
half-wave rectification   345
Hall probe apparatus   326
Hall voltage   325–6, 337
harmonic oscillators   273
harmonics   141–3
Helmholtz coils   328
Henry, Joseph   331
homogeneous equations   7–8
Hooke’s law   100–1, 106
Hubble, Edwin   410
Hubble’s constant   410
Hubble’s law   410
Huygens, Christian, explanation of 
diffraction   149–51

I
ideal gas   256, 261

kinetic theory of   258–61
impulse   63, 67
induced charges   289
induced nuclear fission   371
inelastic collisions   65, 67
instantaneous velocity   33
intensity of a wave   114–15, 126
intensity reflection coefficient   384–5
interference   134, 154

constructive and destructive   134–6
interference patterns   136–9

Young’s double-slit experiment   
138–40

internal energy   264–5, 269
changes in   267–8
during changes of state   269

internal resistance   179–80, 190
effect on power delivery   180–1
measurement   180

inverse square laws   295
ions   197, 212

positive   161, 162
isothermal change   268
isotopes   198, 212
I–V characteristics   167–8, 173

J
joule (J)   88, 89
Joule heating   167

K
kappas (K)
kelvin temperature   246, 251
Kepler, Johannes, third law of planetary 
motion   235
kinematic equations   35–6, 39–40, 46

graphs of   40–2
kinetic energy   95, 96

of α- and β- particles   202
and collisions   64, 67
of gases   264–5
of photoelectrons   352–3
in simple harmonic motion   277, 283

kinetic theory of gases   257–61, 261
Kirchhoff’s first law   182, 190
Kirchhoff’s second law   182–3, 190

L
latent heat   249–50, 251, 269
Leavitt, Henrietta Swan   404
Lenz’s law   333, 337
leptons   209, 210–11, 212
light

blueshift and redshift   120, 408
interference patterns   136–9
nature of   353–4
photons   350–1
polarisation   124–6

spectrum of white light   358
wave properties   137–9, 149, 154
Young’s double-slit experiment   
138–9

light-dependent resistors (LDRs)   171–2
limit of proportionality   100, 106
linear absorption (attenuation) 
coefficient   386, 392
linear momentum   55, 67

see also momentum
line spectra   358–9, 361
liquids

pressure in   78–9, 80
upthrust   79–80

load   100
logarithmic scales   171–2
longitudinal waves   111, 126
luminosity   402–3, 412

Stefan–Boltzmann law   407

M
magnetic effect of an electric current   
317
magnetic field lines   315–16
magnetic fields   315–16, 329, 337

due to currents   326–8
force between parallel conductors   
329
force on a moving charge   320–4
Hall voltage   325–6
motor effect   317–20

magnetic flux (ϕ)   330, 337
magnetic flux density (B)   319, 337

measurement   326
magnetic flux linkage (Nϕ)   330, 337
magnets   315

electromagnets   328
Malus’s law   125, 126
Marsden, Ernest   206
mass   54, 67, 239
mass defect   366–7, 378
mass–energy equivalence   366–7, 378
mass number (nucleon number, A)   162
mass spectrometers   324
Maxwell, James Clerk   124
measurement

accuracy and precision   11–12
choice of instruments   12–13
errors and uncertainties   9–18
of forces   53
of weight and mass   57

mesons   210
microwaves

demonstration of stationary waves   
146
Young’s double-slit experiment   139

Milky Way   408
Millikan, Robert   162
molar gas constant (R)   256
molar mass   254
moles (mol)   253–4, 261
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moment of a force   74, 80
principle of moments   75–6

momentum   55–6, 67
conservation of   61–2
and impulse   63

motion
kinematic equations   35–6, 39–42, 46
Newton’s laws   53–8, 67
non-uniform   58–9
non-uniform acceleration   42–3
two-dimensional   43–5, 46
see also circular motion

motor effect   317–20

N
natural frequency   280–1, 283
neutrinos   201
neutrons   196–7, 198, 210, 212
newton (N)   54, 56
Newton, Isaac   53
Newton’s law of gravitation   233, 235, 
240, 294
Newton’s laws of motion   53–8, 67

problem solving   60
nodes   141–3
normal contact force   58
nuclear equations   367–8
nuclear fission   369, 370–1, 378

chain reactions   372
nuclear fusion   369, 370, 378
nuclear power stations   372
nucleon number (mass number, A)   162
nucleons   162
nucleus

binding energy   367
mass defect   366–7
stability of   368–9

nuclide notation   198
nuclides   198

O
Oersted, Christian   317
Ohm’s law   168, 173
orbits   234–6, 240
order of magnitude   5–6, 24
oscillations (cycles)   112, 272–3, 282–3

damped   279–80
displacement–time graphs   273, 275
forced   280
free   279
simple harmonic motion   274–9

overdamping (heavy damping)   280
overtones   142–3

P
parabolas   43–5
parallax error   14
parallel circuits   182

capacitors   306–7, 312
resistors   184–5

parallel conductors, force between   329
parallel-plate capacitor   303–4

parent nuclides   200
path difference of waves   135
peak values, alternating current   341
percentage uncertainty   10
period of an alternating current   340
period of an oscillation   272, 282
period of a wave   112
permittivity of free space (ε0)   294–5
PET (positron emission tomography)   
398–9, 400
phase   113
phase difference   113–14, 126

and interference   134, 137
photoelectric emission   351–4, 363

Einstein’s theory   354–5
photoelectric equation   355, 363
photoelectrons, energy of   352–3
photons   350, 354, 363
physical quantities   2
piezo-electric transducers   382–3
pions (π)  210
pipes, stationary waves   145–6
pixels   394
Planck, Max   350
Planck constant   350
plane-polarised waves   122, 126
plastic deformation   104, 106
point charges   293–4

electric fields   295–6
electric potential   297
force between   294–5

polarisation   122–6, 126
polarised waves   122–4

light   124–6
polarisers   124–5
position–time graphs   32–3
positive ions   161, 162
positron emission   201
positron emission tomography (PET)   
398–9, 400
positrons (antielectrons)   200, 212
potential difference (p.d., voltage)   
164–5, 173, 178, 190, 296–7

comparing using a potentiometer   
188
Kirchhoff’s second law   182–3
terminal   179–80

potential dividers   185–6, 190
uses of   186–7

potential energy   93, 96
elastic   104–5
electric   298, 299, 307–8
gravitational   93–4, 239–40
in simple harmonic motion   277–8, 
283

potential gradient   297–8
potentiometers   187–8, 190

comparing potential differences and 
e.m.f.s   188

power   91–2, 96
alternating current   343–4
electrical   166
intensity of a wave   114–15

precision   11–12, 24
prefixes, SI units   4
pressure   78, 80

gas laws   254–7
in a liquid   78–9

principle of moments   75–6, 80
progressive waves   111, 126
projectile motion   43–5, 46
proton number (atomic number, Z)   162
protons   196–7, 210, 212
Pythagoras’ theorem   28

Q
quanta   350
quantised amounts   162
quantum theory   354
quarks   209–10, 212
quartz, piezo-electric effect   382–3
quasars   411

R
radians   223, 229
radiant flux intensity   403, 412
radioactive decay   372–3, 378

activity   376
corrected count rate   375
decay constant   375
decay curve   374
exponential nature   377
half-life (t1/2)   374–5
mathematical descriptions   375–8
random nature   373–4

radioactive decay series   203–4
radioactive tracers   397
radioactivity   203, 212

alpha (α)-particles   199–200
background radiation   199
beta (β)-particles   200–2
detection of   204–5
gamma (γ)-radiation   203
kinetic energy of emitted particles   
202

random errors   14–15, 25
random processes   373
rates of change   333
reaction forces, Newton’s third law of 
motion   54
reaction times   14
rectification   345–6, 347
rectifiers   169
redshift   120, 408
reflection   117

of ultrasound   384–5
refraction   117
relative permittivity (εr)   304–5
relative speed   30–1
resistance (R)   166, 173

internal   179–81
relationship to temperature   169

resistivity   169–71, 173
resistors   166

light-dependent (LDRs)   171–2
parallel circuits   184–5, 190

482807_index_CI_AS_Phy_SB_3e_460-466.indd   463 6/25/20   12:07 AM



464

In
d

e
x potential dividers   185–9

series circuits   183–4, 190
thermistors   172–3
variable (rheostats)   187–8

resolution of vectors   23–4, 25
resonance   141, 281–2, 283
resonance curves   281
resonant frequency   281
restoring force   275
resultant force   53
resultant vectors   20, 25
reverse bias   169
rheostats (variable resistors)   187–8
right-hand grip rule   327
ripple tanks   115–16
root-mean-square (r.m.s.) speed of 
molecules   260, 261
root-mean-square values, alternating 
current   344
Rutherford, Ernest   206

S
satellites   236
scalars   18–19, 25
scientific method   1
scintillation counters   205
second harmonic (first overtone)   142
series circuits   181–2

capacitors   305–6, 307, 312
resistors   183–4

SI (Système Internationale) units   2–4, 
24

derived units   6
significant figures   3
simple harmonic motion (s.h.m.)   273, 
274–5, 282–3

energy   277–9
graphical representation   275–6
solution of equation for   275–6

sine rule   28
smoothing   346–7
solenoids   327–8
sound, speed of   147–8
sound waves

CRO investigation   117–18
Doppler effect   119–20
interference patterns   136
wavelength measurement   147–8

specific acoustic impedance   384, 400
specific charge of an electron   322–3
specific heat capacity   247–8, 251
specific latent heat   249–50, 251, 269
spectra

absorption   361–2, 408
emission   358–61

spectrometers   153
spectroscopy   361
speed   30–1, 46

angular   224, 229
spherical conductors, charge on   293–4
spherical uniform mass, gravitational 
field   232

spring constant   101, 106
springs, Hooke’s law   100–1
standard candles   404–5, 412
stars

radii   407
speed relative to Earth   408–9
standard candles   404–5
surface temperature   405–6

static electricity   286–7
see also charge

stationary waves   140–1, 154
in air   145–6
formation of   143–4
on strings   141–3
wavelength measurement   146–8

Stefan–Boltzmann law   407, 412
stopping potential   353
straight-line graphs   38
strain   102, 106
strain energy (elastic potential energy)   
104–5, 106
strange (s) quarks   209
strangeness   209
stress   102, 106
strings, stationary waves   141–3
strong nuclear force   207–8, 370
Sun, nuclear fusion   370
superposition of waves   135, 154

formation of stationary waves   143–4
systematic errors   13–15, 25

T
tables, labelling conventions   8–9, 24
technetium-99m   397
temperature   243–4, 251

gas laws   254–7
kinetic theory of gases   257–61
of stars   405–6
and thermal energy   265–6

temperature measurement   244–5
temperature scales   245–7
tensile deformation   100
tensile stress and strain   102, 106
terminal potential difference   179–80, 
190
terminal velocity   59, 67
tesla (T)   319
thermal energy   244, 251, 265–6

exchanges of   250–1
specific heat capacity   247–8
specific latent heat   249–50

thermal equilibrium   244
thermistors   172–3
thermocouples   244
thermodynamics, first law of   267–8, 269
thermodynamic temperature scale   246, 
251
thermometers   244–5
thermometric properties and substances   
244–5
thermonuclear reactions   370
threshold frequency   352, 354–5, 363

threshold wavelength   352, 363
time constants   310–11, 312
top (t) quarks   209
torque   75, 80
tracers   397, 400
transducers   382–3
transformers   336
transmutation   200
transverse waves   111, 126
triple point of water   246
turning effect of a force see moment of 
a force
two-dimensional motion   43–5, 46

U
ultrasound   382, 400

attenuation   385–6
diagnostic scans   387–8
piezo-electric transducers   382–3
reflection and absorption   384–5

uncertainties   9–11, 24–5
combination of   15–18

unified atomic mass units (u)   197, 365–6
uniform electric fields   290–1
universal gas constant (R)   256
universal gas equation   256
Universe

age of   411–12
expansion of   411

unpolarised waves   123, 124
up (u) quarks   209
upthrust   79–80
uranium-238, decay series   204

V
vaporisation, latent heat of   249–50, 
251, 269
variable capacitors   305
vector representation   20
vectors   18–19, 25

addition and subtraction   20–3
resolution of   23–4

vector triangles   20–3
velocity   31–2, 46

angular   224, 229
instantaneous   33
kinematic equations   35–6, 39–42

velocity selectors   323–4
velocity–time graphs   33, 40–2, 46

simple harmonic motion   276
vertical circular motion   228–9
viscous forces (drag forces)   58–9, 67
volt (V)   164–5
voxels   394

W
watt (W)   92, 166
wave equation   114
wavefronts   113
wavelength   112, 113

stationary waves   143, 146–8
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wave–particle duality   356–7
waves   111, 126, 154

CRO investigation   117–18
diffraction   149–52
Doppler effect   119–20
graphical representation   111–14
intensity   114–15
interference   133–7
reflection   117
refraction   117
ripple tanks   115–16
stationary   140–8

weak force ( weak interaction)   211

weight   56–8, 67, 73, 239
weightlessness   237
white light, spectrum of   358
white light fringes   140
Wien’s displacement law   406, 412
work   87
work done   87–8, 92, 96, 105

by expanding gases   266–7
work function energy (Φ)   354–5, 363

X
X-ray images   391
X-rays   400

attenuation   391–2
CT scanning   393–6
production of   389–90

X-ray spectra   389–90
X-ray tubes   389

Y
Young modulus   101–3, 106
Young’s double-slit experiment   138–40, 
154

Z
zero error   14
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